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Preface

*AM

The purpose of this monograph is to provide a, concise
introduction to the theory of generalized inverses of
matrices that is accessible to undergraduate mathematics
majors. Although results from this active area of research
have appeared'in a, number of excellenp graduate level text--
books since 1971, material for use at the undergraduate
level remains fiagmented. The basic ideas are so fundamental,

however, that they can be used to unify various topics that
an undergraduate has seen but perhaps not related.

Material in this monograph was first as e fed by the
author as lecture notes for the senior seminar in thematics
at the University of Tennessee. . In this seminar one:meeting

.14
per week was for a lecture on the subject'matter,,and another
meeting was to permit students to present solutions ,to-
exerciseg Two major problems were encountered the first

quarter the seminar was given. These were that some of the
students had had only the required one-quarter course 'in

matrix thedry and were not sufficiently familiar with

eitenvalues, eigenvectors and related concepts, and that many
3



of the exercises required fortitude At the suggestion of

the UMAP Editor, the approach in, he present monograph is

(1) to develop the material in terms of full rarik factoriza-

tions and to reLegate all discussions using eigenvalues and

eigenvecters to exercises, and (2) to include an appendix of

hints for exercises. In.addition, it was suggested that the

order of presentation be modified.to provide some monatIon

or considering generalized'inverses b6fore developing the

lgebraic theory. Ths has been accomplished by introducing

he Moore- Penrose inverse of a matrix and immediately

exploring its use in characterizing particular solutions to

systems of equations before establishing many of its aige-

biaic propefties. "

To prepare a monograph of limited length for use at the

undergraduate level precludes giving extensive references to

original sources. Most of the material can be found in

texts such as Bern- Israel and Greville 12] or Rao and Mitra

[11].

Every career is always influenced by colleagues. The

author wishes to express his appreciation particularly to

T.N.E. Greville, L.A. Pyle and A.M. Thrall for continuing

encouragement and availability for consultation.

Randall E. Cline
Knoxville, Tennessee
September 1978

"N.
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Introduction

^41

1.1 Preliminary Remarks

The material in this monograph requires a knowledge of
basic matrix theory available in excellent textbooks such as
Halmos [7], Noble (9] or Strang (123. fundamerital definitions
and concepts are, used without the detailed discussion which
would be included in a self-contained work. Therefore, it may
be heilpful tv!have a standard linear algebia textbooks for
reference if needed.

7
Many examples and exercises are included to.illustrate

and complement the topics discussed in the text. lit is ;ecom-
mended that every exercise be attempted. Although perhaps
not always successful, the challenge of distinguishing among
what can be assumed, what is known and whatzust be shown is
an integral part of the development of the nebulous concept
called mathematical maturity.

CI
.

-1-
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11.2 Matrix Notativntd Termilogy

1-bughout subsequent sections capital La in letters

denote matrices and small Latin letters denote column vectors.
f Unless otherwise stated, all matrices (and thus vectors--being

matrices having a single column) are assumed to aye complex
,numgers as elements. Also, sizes of matrices re assumed to
be afbitrary, subject to conformability in su s and products.

'For example, writing A+B tacitly assumes A and B have the

same size, whereAs AB implies that A is m by n and B is n by
p for .some in, n and-p. (Nofte, however, that even with AB /
defined, BA is defined if and only if n= p.) The special
symbols I and 0 are used. to denote the n by n identity matrix!,,

and,the m'by n null matrix, respectively, with sizes deter-
mined by the context-When no subscripts are used. If it is

importdnt to emphasize size we will write I
n

or 0mn .

Tor any A = (aid), the conjugate transpose.of A is
. A

Written as AH. Thus A = (ij ..), where Tji denotes the con-
jugate of the complex scalar aji.., and if x is a column vector
with compoRents x is the row vector

x = (7 . .7 ).
l'

Co sequently, for a real matrix (vector) -the superscript "H"
de tes transpose.

Given vectors 4 and y, we write the inner product of x
and y as

n
(y,x) = xHy =

27.1

y..
I 1

. i=1

Since only Euclidean Arms will be considered, we write Ilx1r
without a subscript to mean a

in
11x11 = +/(x,x) = +/ 1x.1 12.

To conclude this section it is noted that there are
' certain concepts in the previously cited textbooks Which are 1

10
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either used 'implicitly or discussed in a mannei., thit does not

emphasize their importafice for present purposes. 'Although

sometimes slightly redundant, the decAlon to inclUde such

topics was based upon the Not: to. stress fundamental

unde,rstanding.

a
Exercises

1.1 Let x be any m-tuple and y be any n-tuple.

'a. Form xy and yx
H

.

b. Suppose m = n and that neither x nor y is the zero vector.

Prove that xyH is Hermitiap if and only if y.= ax for some real

scalar a.

1.2 Let A be any m by n matrix with rows H

m
H

and columns

xl,...,xn and let B be any n by p matrix with rows y11,

I

H
and

columns zi,.. ,zp.

a. Prove that the produclkAB can be written as

(zi,w)) . . .' (zp,w1)-

AB =

(z1,wm) . . (zp,wm)

and also as

.AB = / xi yi .

tel

b. Prove that A = 0 if and only if either AHA = 0 or AA" = 0.

c. Show that BA
H
A = CA

H
A for any matrices A,B and C implies

BA
H
= CA

H
.

*1.3 Let A be any norpol matrix with eigenvalues X1,...,Xn and ortho-

normal eigenvectors x1,...,xn.

*Exercises or portions of exercises deignated by an asterisk assume
a knowledge of eigenvalues and eigenvectors.

-3-
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a. Show that A can be written as

A = 1
i

x.x.
H

.

i1

b. If E.
1

= x.I x.
H
,i=1,...,n, show that E., is Hermitianand.idem-

I

.
Potent, and that EiEj = EjEi = 0 for all i # j.

c. Use the expression for A in 1.3a and the result of 1.3b to

conclude that A is Hermitian if and only if all eigenvalues

X. are real.

1.3 A Rationale for Generalized Inverses

'Given a square matrix, A, the existence of a matrix;, X,

such that AX = I is but one of.many equivalent necessary and

sufficient conditions that Ais nonsingular._ (See Ex se

1.4,
.

) 'In this case X = A-1 is the unique two -sided nverse 9f

A, And x = A
-1.
b is the unique solution of the linear algebraic

sy*tem of equations Ax = b for every right-hand side b. Loosely

speaking, the theory of generalized inverses of matrices is

concerned with extkdirig the concept of an inverse of a square

nonsingular matrix to singular matrices and, more generally,

to reytangular matrices by considering various sets of equa-
.

Lions which A and X may to required to. satisfy. ,For-thi
.
purpose we will use combinations of the following fiveAnda-

mental equations:

J

A
k
XA = Ak , fbr some positive integer,k,_

XAX = X.

(Ax)H = AX,

AX =,XA.

ti

d be notea that (2.1) with k > 1 and (1.5)'imillititly

assume A and.X
,

are square matrices, whereas (1.1) with k = 1,
t.

.(1.2)., (1.3), and (1.4),require only that X has the size of AH.

Also, obser4r that all of thegquations clearly told when A

. .

'J2: vo'



is square and nonsingular, and X = A-1 .) Given ft and( subsets
eof Equations (1c1)-(1.5), 'it is logical'to ask whethdr a

'solution X exists, is it unique, ow can it be constructed
and what properties does, it have'? These are the basic 4dft-
tions to be explored in subsequent chapters.

In Chapter 2 we establish the existence and unidueness
of a particular generalized inverse of any matrix A (to be
called the Moore-Penrose inverse of A), and show how this

,

inverse can be, used to characterize the minimal norm or least
Scrizares solutions to,systems of equationsiAx = b when A has/ ..

full row rank of full co)umh rank.. This. iftverse is then

furtheriexplored in Chapter 3 where many.of its properties
is.

'a're derived and certain applicationsdiscuSsed. In Chapter 4.. ,
we consider another unique generalized inverse of square
mStrices A (called the Drazin inverse of A)r.and relate this
ihvierse to Moore-Penrose inverses. ThV: concluding chdpter is

t

to provide brief introduction to the theory of generalized
inver4es tha 'are not unique.,

Exer.cises

'IA 'For any A, ret N(A) denote the null space of A, thlt is,

N(A) = {zlAz = 0).

1 a. If A is a n by n matrix, show that the following,conditions

are equivalent

5" (0 A is nonsingular,

(ii) ,5A) contains only the null vector,

(iii) Wank (A) = h,
. ,

(iy) A has a right inveT,

(v) Ax = b has a unique sod tron for every right-hand
- side b.

b.

1.5 ,Let

A .'
4' .

V

What other

1 2 1 ,1

1 1 2 1

1 1 1 2

1 1 I 1

equivalent

, X

statements
AP'

--I -1 -1 4

1 0, 0 L1,

0 .1 0 -1

0 0 1 -1

can be added to this list?

.5.

13
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1.

a . Show that X = A
-1

b. If A5 is the five by five matrix obtained by extending A4 in

the obvious manner, that is, A
5
= (a..) where

2, if i = j-1,

aij 1, otherwise,

form A5 -1. More generally, given An of this form for any
ito

> 21 What is A n- 1 a

c. Prove that A
n

is unimbdular for all n > 2, that is,

Idet Anf = 1.

Show that any system of aquaria's b with b integral has

111111)1ki.an integral solution x..

1.6 Let x be any vector with ['xi' = 1 and let k be any real number.

1.7

a. Show that A = I + kxxH is nonsingular for all k A -1.

b. Given the forty by forty matrix A = (a.
ij

) with

17, if i =
a . -

1, otherWise,

construct A-1.

Show that A in 1.6a is an involution when k = -2.

d. Chow that A is idempote.nt,when k =

*e. Show that A has one eigenvalue equal to l+k and all other

eigenvalues equal to unity. (Hint: Consider x and any'veclor

y orthogonal to x.)

*f. Construct an orthOnormal set of eigenvectors for A,in 1.6b.

Given the following pairs of matrices, show that A ad X satisfy

'el

(1.1) with k = 1,. (1.2), (1.3), and (1.4).

a.
1%

1 0 2
A

[1.
X = 1/10[0 01;

0 -2
2

14



b. I

2
A =

-1

_0

2

1

2

1 j

15

14

-6

-7

3

c. -A s [3
6

21 X= (/50{2
63

1

6

1.8 Show that the inatres

-4 -5 -6 "4 -5 -4 -3
I 2 2 4 2 2X . 1/2
2 2 ."4 2 1 I 2 1

1 0 0 0 0

satisfyT1.1) with k = 2, (1.2) and (1.5).

7



.2

Syslems of Equations
and the

Moore-Penrose Inverse
of a Matrix

2.1 Zero, One or Many Solutions of Ax = b

Given.a ltear algebraic system of mequations-in n
unknowns written as Ax lb, a standard method to determine the
:number of solutions is to first reduce'the augmented matrix
[A,b] to row echelon form. The number'of solutions is then
character,ized by relations among the number of unknowns,
rank (A) and rank ([A,b)). In particular, Ax = b is a consis-
tent system of equations, that is, therelexists at least one
solution, if and only if rank (A) = rank ([A,b)). Moreover,
a consiAtent system of equations Ax = b has a unique solution
if and only if rank (1) ,=n. On the other hand, Ax=b has no
exact solution when rank (A) < rank ([A,b)). It is.the
purpose of this chapter to show how the Moore-Penrose inverse
of A can be used to distinguish among,these three cases and '

to provide alternative forms of representatiogg which are
frequently'employed in each case.

For any matrix, A, let CS(A) denote the column space of
A, that`-is,

-9-
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CS(A) = fyly,=Ax, for'some vector x},

Then Ax =;b a consistent system of equat-ions implies beCS(A)-

and conversely (which is s4,!liply another way of saying that A

and [A,tfhave the same rank). Now by definition,

and if

rank (A)'= dimensione(CS(A)),

N(A) = {z I Az.= 0)

denotes the null space of A' (cf. Exercise 1.4), then we have

the well-known felation that

. rank (A) + dimension (N(A)) = n.

Givena consistent system of equations Ax=b with A m by

n of rank r, it followt, therefore; that if r''=n, then A has

full column rank and x = ALb is the unique solution, where AL

is any left inverse of A. The problem in this case iR thus

to construct A
L
b.

,However,.when r < n, so that N(A) consists4of more than

only the zero vector, then for any solution, x 01.
!

of Ax = b,

any vector zEN(A) and any scalar a,x2 =
1
+ az is alsoia solu-

tion of Ax = b.' Conversely, if x1 and x2 are any pair of

solutions of'Ax I b, and if z = x1 x2, then Az.= Axi Ax2

= b - b = 0 so that zeN(A). Hence all solutions to Ax = b in

this case can be written as

n-r
(2.1) x = x

1
+ 1 a.z.,
i=1 "

where x1 is any particular solution, z1,...,271_r are

of vectors which form a basis of N(A) hn r are
arbitrary scalars.

Often the problem now is simply to character e all solu-

tions,. More frequently, it is to determine tho e solutions

which satisfy one or more additional conditions as, for example,

in linear programming where we wish to construct i nonnegative

solution of Ax = b which also maximizes (c,x) w ere c is some

given vector 'and A, b and c have real element



ra

Given an inconsistent- systOof equations Ax = b, -that

is, where rank (A) < rank (A,h) so that there is no exact

solution, a* freqUently used prOcedbi4 is 'to construct a vector

x,_say, which is a "best approximate" sblution by some

criterion. Perhaps the most generally used criterion is that

of least squares in which it is required io determine'z to__-
minimize 11Ax bid or, equivalently, to minimize 11AX -` Oi12.

In this case, if A has full column rank, then x = (AHAYkAllb
ti

is the least squares solution (see Exercise 2.7).

Exercises

2.1 Given the following matrices, Ai, and vektors, bi, determine which

of the sets of equations Aix = bi have a-ynique solution, infi-

nitely h ny *olutions or no exact solutions- and- construct the

unique so tions when they exist.

Al 1= 11 1

(i)

L4

0

5

1

. (v) 2

A
5=

1

3

2

1

-3

1

3

-2

0

1'

0

1

7"

2

1

0

1

5

31

1

-1

0

b i

,

, '65=.

-4

6

2

8

2

-4

2

-5

;

,-

(ii)
A2=

(iv)

A4=

(vi)

A6=

1

3

2

3

1

2

0

6

1

i

0

3

2

, b2=

1

0

-1

1

0

,

4

1 1

1

1

b4=

' b6=

4

5

;

,

0

2.2 For any partitioned matrix A = (B,R) with El.nonsingular, prove that

columns of the matrix

form a. basis of N(A).

2.3 Construct a basis for N(A6) in Exercise 2.1.

-11-
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2.4 Apply the Gram-Schmidt process to the basis in Exercise'2.3 to

construct an orthonormal basis of N(A6).

2.5 /Show that if z1 and z; are any vectors which form an orthonormal

basis of N(A6).and if all solutions of A6x = b6 are written as

where

then

x = xl + alzl + a2z2

xlH

1

12
= (0 -1 1 21,

1(1112 + la212
= 2for every solution such that Ilx11=25/24.

2.6 Show that A% ANA and AA
H
have tile same rank for every matrix A.

2.7 a. Given any system of equations Ax = b with A m by n and

rank (ft) = n,,show by use of calculus that the least squares

solution, x, has the -form x = (ANA) -1AHb. Suppose m = n?

b. Construct the least squares solution of Ax = b if

A=
1 2

1

1 1

, b

3

1

-1

.

2.2 Full Rank Factorizations and the Moore-Penrose Inverse
* .

Given any matrix A (not necessarily squat V, it follows

at once that if Xlis any matrix such that A and X satisfy (1.1)

wit k = 1, (61.2), (1.3) and q.,4), then X is unique. For if

(2. )/ AXA = A, XAX4X,(AX)H = AX,'(XA)H =

and if A and Y also saiiiiy these equations, then

X = XAX
=X(AX)Ii= xxHA H ,XXH(AYA) H.

=
xxHAH(Ay)H

= XAY = (XA)HY 4 AHey

(AYA)HXHY
(yA)HAHxHy

rAXAT = YAY = Y'.

Now if A has full row rank, then with X any right inverse of A,

AX = I is Hermitian and the first two equations in (2,2) hold,.

Dually, if A has full column rank and X is any left inverse of

-12- `1!
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A, XA = I is Hermitian and again the first' two equations in

(2:,2) hold. As shown'in the following. lemma, there is a

choice of X in both cases so that all four conditions hold.

LEMMA 1: Let'A be any matrix with full row rank or full
column rank. If A has full row rank, then X = AH(AAH)-1 is

-.the unique right inverse of A with XA Hermitian. If A has
full column rank, then X = (AHA)-JAH is the unique left

inverse of A with AX Hermitian.

Proof: If A is any matrix with full row rank, AA H is non-

singular by Exercise 2.6. Now X = AH (AA
H

)
-1

is a right

inverse of A, and

(XA)H = (AH(AAH)-1A) H AH(AAH)-1A
= XA.

,Thus A and X satisfy the four equations in (2.2), and X is
unique.

The dual relationship when A has full column rank follows
in an analogous manner with AHA nonsingular. I

It should be noted that X = A -1 in (2.2) when A is square.

and nonsingular, and that both forms for X,in Lemma 1 reduce
to A-1 in this case. More generally, we will see in Theorem 4

that the unique X in (2.2) exists for every matrix A. Such

an i is called the Moore-Penrose inverse of A and is written
A+. Thus we have froM lemma 1 the special cases:

(2,3) A+
0

Example 2.1

=

{l0

A
H (AH )

-1
, if A has full roc;

(A
H
A)

-1
A
H

, if A has full column

0 1
then.(AAH)-1" = [ 2

1

1 1 2

rank,

rank.

1
1

3

2

-1

-1

2

If A'= =
'

'end so
4

-1

i -1 2

1 1

,13-
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.

x r

Example 7; I

ff y is the column vectOrJ

Y=

then

i +

Y TS' [1. 2-i

2+i

0

-3i

-

Note in general that f oore-Penrose of any nonzero
.

,row or column vector i i mply the conjugate transpose the
. ,

vector multiplied by,t reciprocal of the square of its ,

lAgth. , it
. . i

,I 1

Let us,next colis4 r the'geometzl4 y.of solving systems of

equations in terms ofAi. for the, special cases in (213).

Given any, system of "tiOns Ax = b and any matrix, )C, such.

that AXA = A,
5
it fallow* at once that the system is dbnsis-

tent. ft and only 14 't

(2.4) AXb f b.

For if (2;4) holds; then:x= Xb is-n solution. Conversely,

if Ax = b is consistent4multiplying each, side on the left by

AX gives Ax = AXAx = AX11.\? AO that (2.4) lbllows. Suppose now,

that Ax = b is a system oitm equations in n unknowns WhereA

has full row rank. Then Ax '=,b is always consistent since

(2,4) holds with X any righeinyerse of 'A,. and we have from

(2.1) that all solutions can be writtln as

(2.5) x = Xb Zy

with Z any matrix with'in- ccAumns which ford.a basis of N(A)

and y in arbitrary vector. TO(ing X to be the right inverse. .

A+ in this case gives theo

THEOREM 2: For any syste quations Ax-= b where A has

full row rank, x = A4h nfir,solkition with 115(112'



0

% -

-,

Proof: With k = _A+ in*,(2.3)

'1,141-2 = (x,x) = (A+b+Zy,A;.b+Zy)

(A+b,A+b) + (Zy,Zy) = 11A!htl2 +

since

(AH(AAH) 1
, 1)10) = ((AA

H
)
-1
b,AZy) = 0.

Thus,

I/XII2 > IIA+b!12,

where equality holds if and only if 4. = C:111'

Example 2.3
'.;`"c ,

cif A is the 'mattlx in Example 2.1 and, b
-4 'then

..tt.r 5

, ..
o 14 ,. .. e I

x = A+b = 4- -13 . - A

1 "C'i 'tz i t

1 1

i

1 2 132.is the minimal norm solution of Ax =
o

b witl cl !xi = ---r
..

It was noted in Section 2.1 that the-.1east* squafes solu-

tion of an inconsistent system of equAtioks Ax =:b when A has

full column rank is 9t . (AHA) -1Alib . Froth (2. Ge have,

`therefore', that x = WA is the least squ'ates solution in this,
case. Although this result Carl be established by use'of

calc,ulus (Exercise 2.7), 'the:following derivatiOn in termi:of

'norms is more. direct. . a . .

.
. ".P° , ,.. - .

THEOREM 3: eor anY sistqu of equatlions Ax A b where A,has

"lfilll column rank; x" = *4+b iS.thea unique° vector with Ilk.-Axj
. .

, minimal." 'a . : 4. -
,a- ,Prdbf: If A is tguafe of if m)- nand Ax =1) r'S consistent,

then with A4: = `'(AirAj-IA114:4 left inverstn of" 'A',and AA+b = b, the

vector x = A+b is4trie%tnique solution with. 1 Ih-Ax112. = O. On ,

the other hand, if m 51 it .and ax = b is` 'inconsistent,.

.,.°

Ilb-AxI12 = I i ? sl -AA+)b-A (x-A> b) 1 I -)

' I I b-AA
+

WI I
2

+ 14A(x-A+b)4°12.,- ' .**
.... . -

, . -15-
1

v
*

li: 22



INt

since AH(I-AA) = 0. Hence Ilb-Ax112 > Ilb-Ae.bil2 where
equality holds if and only if liA(x-eb)112 = O. But A with

full column rank implies IlAy112 > 0 for any vector y # 0,

in particular for y = x -

Example 2.4

If
4.

2 1 1

A= 1 1 , b = [2

-1 0 3

,

then

and

A+ +

x =

[3TT

=

3 -21
.1j

{

+
=

1, AA b - TT

-1

10

-3

# b,

is the least squares solution of Ax = b with Ilb-Ax11 2 144
-rr

minimal.

.

Havidi established 4i. for,the special cases in Lemma 1,

it remains to establish existence for the general case of an
arbitrary matrix A. For this purpose' we firse.require a

.definition.
.

.
'

. .

DEFINITTON 1: Any product EFG with E m by r,
%

F r Ilr'r and G r. by n is called a full rank

factorization if/each of the matrices E, F and G
has rank r.

.

z

The importance of Definition 1 is that any nonnull matrix can

be expressed in terms of full rank factorizabi:onsi and that
.1', the Moore-Penrose inverse of such a productis the product of

the corresponding inverse ifi reverse ordef..4
. &

To construct a full rank-factorization of a Aonnul

111matrix, let Abe any m by n matrix with rank r. Desig te

columns 'of A as al,...,an. Then A with rant r implies that
A..t.

there exists at least one set' r coll4mq of A which are

-16=

...pz-
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linearly independent. Let J = 01,...,41 be any set of

indices for which a
)1' )r

are linearly independent, and

let E bte the m byr matrix

E = [a. ,...,a. ).
)1 )r

If r = n, 'then A = E is a trivial full rank factorization

(with F = G = I). Suppose r < n. Then for every column

a3
)' )

there is a column vector y. say, such that a. = Ey..

Now form the r by n matrix, G, with .columns gi,...,gn as
.

follows: Let

yi, if jtJ,
tl

gi
ei, if j = jieJ,

where-ei,i=1,...,r, denote unit vectors. For this matrix G

we then have

EG = [al,...,an) =

Moxedver, since the columns el,...,er of G form a r by i
,

identity matrix, rank (G) = r, and with rank, (E) = r by con-

struction, A = EG is a full rank factorization (with F = I).

_That a full rank factorization A = EFG is not unique is

apparent by observing that Jf M and N are any nonsingular,

matri s, Min A= EM(M-1NN 1G is also a full rank factori-

zation. The following example illustrates four full rank

' factorizations of a liven matrix, A, where F'= J in each case.

Example 2..5

Let

'A Y 1 1 2

2 0 4 2;' 6

-1 3 -5 2 -15

Then

4, 2 0
[1.

3

0 2 1 31 [2
4

1 -2 0 3 -5
1 1

-5
Lo 1 -1 1 -4i 1 -1, 4

-J '] -1

2.4.



24 6 1'4/5
3/5 1 .7/5 0 1 1 -S 0 -7

= 11 -1 1
1/5 -2/5 0 -r3/5 11

= 1 2
0, 2 1 31.

-15 3 2

Using full rank fattorization, the existence of the Moore-
Penrose inverse'of any matrix follows at once. The following
theorem, stated in the farm rediscovered, by Penrose [10] but

originally established by Moore [8], is fundamental to the

theory of generalized inverses of matrices.
Ow'

THEOREM 4: For any matrix, A, the four equations

AXA = A, XAX = X, 4..O.X)H =,AX, (X4)11 = XA

have a unique solution X = A+. If A = Omn is the m by n null

matrix, A+ = 0
nm

. If A is not the null matrix, then for any

Amaull tank factorization EFG of A, A+ = G+F-1E+.
4

rpof: Uniqueness in every case follows from the remarks
' after (2.2).

If A.= Omn then XAX = X implies X = = 0
nm . If A is

licit the null matrix, then for any full rank factorization
A = EFG it follows by definition that E has full column rank,
Fis nonsingular and G has full rip rank. Thus,E4 = (EHE)-1EH

and G+ = GH(GGH).,by (2.3), with E+ a left inverse of E and
G+ a right inverse of G. Then if X = G+F-1E+, XA = G+G and

AX = EE+ are Hermitian, by Lemma 1. Moreover, AXA = A and

XAX. =..X, so that X = A. I
It should be noted that although the existence of a ful4

rank factorjzation A =,EG has been established for any non- ?
null matrix A, this does not provide a systematic computatignal
procedure for constructing a factorization. Such a procedure
will be developed in Exercise 3.3, however, after we have

considered the relationship between A+ and the Moore-Penrose
inverse of matrices obtained by permuting rows or columns or

both rows and columns of A. Observe; moreover, that if Ax = b

is any system of equations with A = EG a full rank factoriza-

tion, and if y = ,Gx, then y.= E+13 is the least square
solution to Ey = b, by Theore,m 3. Now the system of equations

-18-
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.Gx = eb is always consistent and has minimal norm solution
X = eeb, by- Teorem 2. Consequently we can comb no
results of Theorems.2 and 3 by saying that x JO, is the
least squares solution of.Ax = b with_lixii 2

minimal.
Although of mathematical interest (see, for example, Exercises
3.12 and 3.13), most practical applicatiohs of least squares:,
require that problems be formulated in such a way that the
matrix A has full column rank.

Exercises

2:8 Show that x
1

* A6
+
b in Exercise 2.5.

2.9 Show thatrif A is any nonsingular matrix,,then

MI+ =
[0(AAH+88H)-1

(
1.

H
(AA

H
+BB

H
)
-1

2.10 Let u bathe colunin'mector with'n elements each equal -td unity.
Show that

11,Ur 1

n+1
u
M

[(n+1)I-uul

2.11 a. Gimi any real numbers loi ..... bn, show that all solutions to

the equatiobs,

x. + x c At'''. , . An,
,n+1

sTt.

can be written as

n
1 r

x. b
6+1

L b
i

+ u, i

and

m4
1 r

xo+1 a'

where a is'arbitrary.

b. For what'choice oka can we e the additional condition

that

-19-
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c. Show that When the condition in 2.1Ib is iMpoied, x

becomes simply the mean of that is,

n

xn+1 b"ni,

f
d. Show that the problem of solving t e equations in 2.11a,

subject to the conditions in 2.ITb, can be formulated

equivalently as a system of equations AX = b with the n+l

by n +l matrix A Hermitian and nonsingular.

2.12 Given any real numbers bi,...,bn, show that the mean is the least

%. squares solution to thq equations

= 1,...,n.

2.13 If Ax = b is any system of equations with A = uv, a matrix of rank

ope, show that

(b,u)
x =

diull211v1I2

is the least squares, solution with minimal norm.

1:141.et Ax b be any consistent system of equations and let

zi....,zn_r be any -set of vectors which form an orthbnormal basis

of N(A), where rank (A) = r. Show that if x is any solution of

Ax = b,

n-r
+Ab=x- la.z.

"
with a

i

= i = I,...,n-r.

2.15 (Continuation): Let A be any m by n matrix with full row rank, and

let Z be any. by n-m matrix whose columns form an ONIonormal

basis of,N(A). Prove that if X is any right inverse of A,

- 221X.

2.16 Use the results of Exercises 2.4 and 2.15 to ocinstruct A6, starting

with the right inverse
-3

0 0

0 0

-20-
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2.3 Some Geometric Illustrations

In this section we illustrate the geometry of, Theorems 2

and 3 with some diagrams:

Conside' a single equation in three real variables of

the form

(2.6) a
11

x
1

+ a12 x
2

+ a
13

x
3
=D

1.

Then it is well known that all vectors x
H

= [x
l' 2

x'
'

x
3

] which

satisfy (2.6) is a plane P1(b1), as shown in Figure 1. Now
the plane P1(0) is

x
3,

Figure 1. The plane 111(1)1) and solution ;E.

parallel to P1(b1), and consists of all solutions

z
H

= (z1,i2,z3] to the homogeneous equation.'

(2.7) a
Ill

z
1

a12z2 + a13z3 = 0.

Then if b1'0, all solutions 7eP1
(b

1
) can be written as

x = x + z for some zeP1(0), and cdnveisely, as shown in Figure

2. (Clearly, this is the geometrig interpretation of (2.1)

for a single equation in thYee unktowns with two vectors

.-required to span P1(0).) If we now let a1H
r

'-l'al2'a131'
so that (2.6)'Ean be written as ail& = bl, Theorem 2 implies

VS

-21-



_ =
Figure 2. P

1

(b
1

), PI "(0) x z and x.

that the solution of the form x = a
1

H+
b
1

is the point on
P
1 (b 1) with minimal distance froift the origin. Also, since

the vector x" is perpendicular to the planes Pi (0) ,Pi (bi);

I I Ccl I is the distance between P1(0) and Pi (bi) . The repre-

sentation of any solutiOn 7 as x = 'a1H +b1 + ctiz, corresponding

to' (2.1) in this case, is illustratgd in Figure 3.
).

x
3

Figure 3.. The representation 7t.". al H+ bi + olz.

-22-
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Suppose next that we consid (2.6) and a second equation
. ,

(2.8) a21x1
a22x2 a23x3

\ Let the plane of solutions of (2.8) be designated as P2(b2 )..
\ Then it' follows' that either the la 'es P 1) and P2(b2) coin-
cide, or they ate parallel and distinct, or they intersect in
a straight line. In the first case, when P1(b1) and P2(b2)
coincide, the equation in (2.8) is a multiple of (2.0) and
any point satisfying one equation also satisfies the other.
On the other hand, when P1(b1) and P2(b2) are parallel and
distinct, there is no exact solution. Finally, when P1(b1)
and P2(b2) intersect in a straight line 212, say, that is,

.2'12 Pi(bi)n P2(b2), then any point on 212 satisfies both -

A2:6) and (2.8). Observe, moreover, that with

7111 a12 a13- b

A =
, b =

a
21

a
22

a
23 b

2

the point on £12 with minimal distance from the origin is
x = A

+
b. This last case is illustrated in Figure 4, where

2.

1; is a "translation," of the subspace N(A) of the form
P1(0) fl p2(0).

x3

Figure 4. Pi (bi) P2(b2), 112 and Afb.

-23-
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AV.

The extension to three or more equations is now obvious*,

Given a third equation

(2.9) a
31

x
1

+ a
32

x
2

+ a
33

x3 = b3,

let P
3
(b

3
) be the associated plane of solutions. Then assum-

ing the planes P1(b1) and P2(b2) do not coino4Op or4are notl,

parallel and distinct, that is, they intersect in the line £12

as shown in Figure 4, the existence ofa vector x H
= (x

1
,x

2'
x,)

satisfying (2.6), (2.8) and (2.9) is determined by the condi-

tions that either P
3
(b

3
) contains the!'line

12'
or P

3
(b

3
) and

£12 are parallel and distinct, or P3rb39 and £12 intersect in

a single point. (The reader is ur'Odrto construct figures to 6

illustrate these cases. An i'llustiqipon of three different

planes containing the same line may also be found in Figure

S.) For m > 4 equations, similar considerations as to the

intersections of plane's Pk(bk) and lines L.:, = Pi(bi) fl P3

again hold, but diagrams become exceedingly difficult to

visualize.

For any system of equations Ax = b let y = AA+b, that

y is the perpendicdlar projection,of b onto CS(A), the column

space of A. Then it follows from (2:4) that Ax = y is

always a consistent system of equations, and from Theorem 2

that A+y = A+(AA+)b = A+b is the minimal norm solution. More-

over, we have from Theorem 3 that if Ax = b is inconsistent,

then

' IIY-b112 IIAA+b-b112

minimal. Thus, .the minimal norm solution A+y of Ax = y

o minimizes Ily-bli
2

. ki

Consider an inconsistent system of, say, three equations

wo unknowns, Ax b, and suppose rank (A) = 2. Let

AA+b ihave components yi,y2,y3, and let a1H ,a2
H
,a3 desigz

nate rows of A. Now if P.(y.) is the plane of all soltlionr

ofamilx..yi,i= 1,2,31 then 'the set of all solutions of

Ax = y is the line L
12

= P
1
(y

1
)n P

2
(y

2
) as shown

.

in Figure Sa,

A+y = A+ is the, point on 214 of minimal norm and Ily-bll' is

mint:m,' as shown in Figure Sb.

31
-24-



(a)

Figure'5. (a) Solutions of Ax = y where y = Aeb.

(b) The vectors b, y and (i-Pie)b.

To conclude this section we remark that since

b = AA ±b + (I-AA+)b

is an orthogonal decomposition of any vector b with

Ilb112 = 11A,A112 II(I-Ae)b112,

then the ratio

(2.10) IIAA+b147-

fi(i-Ae)b112
> 0

A

provides a measure of inconsistency-of the system Ax = b. In

particular, . 0 implies b is,orthogonal to CS(A), whereas

large values of imply that b is nearly contained in CS(A),

that is, II(I-AA +
)bll

2
is relatively small. (For statistical

applications (1) (4) (5), the values 11b112,11AA112 and

11.(I-AA+)1412 are frequently referred to as TSS (Tbtal sum of

squares), SSR (Sum of squares due to regression) and AE (Sum

of squares dug to error), Tespectively. Under4certain general

assumptions, particular multiples of 4> can be shown tb have

distribUtiOns which can be used in tests of significance.)

-25-



Although the statistical theory of linear regression models

is not germane to the present considerations, formatiop of

j.n (2.10) can provide insight into the inconsistency of a

system of equations Ax = b. (See Exercise 2.18.)

Exercises

2.17 Use the techniques of solid-analytic geometry to prove that the

lines L12 = P1(b1)11P2(b2), b1 0 0 a*d b2 # 0 and t12 = pi(o)n P2(0)

are parallel. In addition, show by similal2 methods that if

Pi(bi) = {xlai
H
x = b1, aiH = (a11,ai2,ai3)},

they

114tbill2 =rninllx112
e.4

xcybi).

2.18 Given any points (xi,y,), i = in the (x,y) plane with

x0,...,xn distinct, it is well known that there is a unique

interpolating polynomial Pn(x) of degree < n hat is, Pn(xi) = yi

for all i = 0 ..... n), and if

!

t P
n
(x) =a

0
+a1 x+ , +an xn ,

f
Q

_the{ ao,...,an can be determined by solving the system of equa-

tions

A=

Aa = y Where

1 x0 ... xOn

1 x
1

I xn x
n

<Nal

o =

(10

a
n

Y "

y0

y1

n_

1).

Now any matrix, A, with this form is called a Vandermonde matrix,

and it can be shown that

det(A) H (x.-x
1<j I

-26-



e ;

Thus, with xo,...,xn distinct, A is nonsingular, and if Ak denotes,

the submatrix consisting of the first k columns of A, k = 1,2,...,n,

then Ak has full column rank for every k.

For k < n, the least squares polynomial approximation of

degree k to the points (xi,yi), i = 0 ..... n, is defined to be that

polynomial

,P
k
(x) = .+ a x + a x

k
0 1 k

which minimizes

n'

E Ey. - P (x )1
2

k

.
. _

.a. Show that the coefficients ao..... ak of the least sqOarek

polynomial approximation of degree k are elements of the

vector a, where

a = A
k+1

+
y.

'II
b. Show that with TSS = E yi

2
, then SSR = II A +v112

4.Ak+1 k+1

c. Given the data

' -1 0

T10

2

yi -5 -4 -3 10'

constru t the best linear, quadratic and cubic least squares

approxi tlOns. For,each case determine SSR and S'SE. What

concius ons can you draw from the data available?

2.4 Miscellaneous Exercises

219 Let A, Z1 and Z be any matrices.
-a--

a. Prove that a solution, X, to the equations XAX = X, AX = Z
1

and XA = Z2, if it exists, is unique.

4

For what Choices of Z1 and Z2 is X a generalized inverse of A?

%2.20 Verify the following steps in the original Penrose proof of the
'(

-, existence of X in (2.2):

-27-
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a. , The equations of XAX = X and (AX)
H
= AX are equivalent to

the single equations XX
H
A
H

= X. Dually, AXA = A and

(XA)H = XA are equivalent to the single equation XAAH s AH.

b. ' If there exists a matrix B llatlsfying BA
H
AA

H
= A

H
, then

X = BA
H

is a solution of the eqiiatio% XX
HAH

= X and XAAH = A
H

.

c. The matrices A
H
A, (A

H
A)

2
, (A

H
A)

3
..... are not all linearly

inddpendent, so thai there exists scalars di ..... dk not all

zero, for which

d
1

AHA+ d2(AHA)2 + + d (AHA) = O.

(Nott that if A has n columns, k < n2+1. Why?),

d. Let d
s
be the first nonzero scalar in the matrix polynomial

in 2.20c, and fet

B = {d I + d
s+2

A
H
A + + d

s
s+I

Then B(AHA)s+1 =

e. The matrix B also satisfies BAHAAH A .

2.21 Let A and X be any matrices such that AXA = A. Show that, if Ax = b ,

is a consistent system of equations, then all solutions can be

. written as

x = Xb + (I-XA)y
0

where y is arbitrary. (Note, in particular, that this expresslori%

is equiv0alent to the form for x in (2.5) since columns of I-XA

form a basis for N(A). Why?)

2.22 (Continuation): Prove, more generally, that AWC = B is a consistent

system of equations if and only If AA+BeC = B, in which case all

solutions can be written as

W AM+ + Y - A+AYCe,

where Y is arbitrary.

3a,



a

f;,

,

More on
I

Mopre-PeiirOse hiveises

3.1 Basil Properties of A!
.

0The various properties'
of A+.-discussed in thig section

are fundamental to the theory of Moore- nrose inverses. In
many oases, proofs simply require merif Cation that the
defining equations in (2.2)) are satisfi for A and some
particular matrix X. 'Having illbstrated his proof technique
in a number of cases, we will leave the remaining similar
arguments as exercises.

LEMMA 5: Let A be any m by Ti Ifiatrix. Then'

(a) A m by p implies A+ n by.m;

(1Y) A =10 implies A+ 0
nm'

A;
.-

(d) AH+ = A+H;

(e) A+ (AHA) +AH - AH(AAH ),+
;

(f) (A
H
A)

+
. A+AH+;

.



(g) (aA)+ = a+A+, for any sewer a, whefe

,
if a 0 0,

a =

0, if m = 0;

(h) If U and V are-unitammatrices, (UAV) VHA+0;

n n

(i) If A = / A. where A.
HA . 0 whenever i 0 j, A = 1 A.

i=1 1
1 13 . 1 '

=1

(j) If Ais normal, A+A = AA+; ..

(k) A, A+, A+A and AA+ all have rank equal to trace (A+A).

Proof: Properties (a) and (b) have been noted previously in

Section 1.3 and Theorem 4, respectively. The relations in

(c) and (d) follow by observing that'there is complete

Jduality in the roles of A and X in the defining equations.

To establish the first expression for 4in (e), let

X = (AHA)+AH. Then XA = (AHA)+AHA is Hermitian, and also

AX =*A(AHA)+AH by use of (d). Moreover, XAX = X and

AXA = A(AHA) +AHA
AH+AHA(AHA)uHA AH+AHA

The second expression in (e) follows by ti,similar type of

argument, as do the expressions in (g) and (h).

To prove (f) we have A
H+

= A(A
H
A)

+ by (d)and (e). Then

A
+
A
H+

= (A
H
A)

+AHA(AHA) + = (A
H
A)

+

To prove (i), observe first that AiHAj = 0 implies

A1.
+
A. = A1+ A1

+H
. A1H A3 = 0

and also AJ 1'A. = 0 since

A. A. = 0.

Now we can again show that A and A+ satisfy tgedefining

equation.

That (j) holds follows by use of le) to write

(AHA)+AHA (AAH)+AAH AH:AH
(AA+)H = AA+.
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To show that A, A+, A+A and AA+ all have the same rank,
we can apply the fact that the rank of a product of matrices
never exceeds the rank of any factor to the equations
AA+A = A and A+AAP'1:' A+.- Then rank (A) = trace (A+A) holds
since rank (E) = trace (E) for any idempotent matrix E [73. II

Observe in Lemma 5(e) that these expressions for A+
re.. to the expressions in (2.3) wheneVey A has
rank or 1 column rank. Moreover bs-efire that the rela-
ti'Onship (EG) holds for-full rank factorizations
EG, by Theorem 4, als. 14s for A A where A is any matrix,
by Lemma 5(f). The following a'Ampleshows, however, that
the relation (BA)+ = A+B+ need not.hold fWarbitrary matrices
A and B.

Example 3.1

Let

1 0
1 1 -1

A = [1 1, B=
1

0 1 -1

Then

1 0
+,BA =

0

]
= (BA)

since BA is Hermitian and

A+ F (AHA)-1AH = 1,2[

and

13+ BHOBH)-1'= 1/2

so that .

idempotent.

2

[0-2 3 0

1
2

1 1 [
-2

-1 -1

Also,

11

1 lj

-2

3

we have

.1,21-

L2

= 1/2

02

1

2 -2

0 1

0-1

01

,

A+B+ = (BA)+.
1 1

Let A be any m by n matrix with columns al,...,an, and
let Q designate the permutation matrix obtained by permuting
columns of In in any'orftr 01,...,jd. Then

-31-
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AQ = f a . , . a . ] .

31 3n

in-a similar manner, if w1H,...wmH designate the rows of A,

and if P 10 the permutation matrix obtained by peffnuting

rows of Im in any order then

PA =

w.
H

1
1.

w.
H

1.
m

Combining these observations it follows, therefore, that if

A is any m by n matrix formed by permuting rows of A or col-

umns of A or both rows and also columns of A in.any manner,

then A =,PAQ for some permutation matrices P and Q. Moreovkr,

since P and Q are unitary matrices,

A+ = (PAY,

by Lemma 5(h), and thus

+
=

+
QA ?..

In other words, A
+-

can 4e obtained by permuting rows and/or

columns of 11:2

Example 3.2

'Construct B4. if

1 1

Li 0 1

Since B in this case can be written as

B = PAQ
0 1]

1 0 0 1 1
1 0 0

where A is the matrix in Example 2.1, then with P and Q

Hermitian

39
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-1 2

0 1 0

'
1

[1

1 1

0

0 0 1 2

B+ ** A+PH ti 1/3 0 1 0 -1 2
1 0

= 71 2 -1
1 0 0 1 1

1 1

'1's (It should be noted that)3. can be writted alternately as

1

[0 0 1

1 0 0

and so we have also B+ . Q
1
He.)

Further applicaticihs of full rank factorizations ana of
permuted mptrices PAQin the computation of A+ will be . .

illustrated in the exercises at the end of this section. We

turn now to asomewhat different method for'computing A+.

This proFedureessentially provides a method for Constructing
.

the Moore-Penrose inverse of any matrix with k columns, given --It

that the Moore-Penrose inverse of the subiatrix consisting of,.-!.__
the first k-1 columns is known. g

For any k > 2, let Ak denote the matrix with k columns,
a
1

'Then Ak can be written in partitioned form as
A
k (Ak.vak]. Assuming Ak:, is knoWh, Ak can be formed.

using the formulas,in Theorem 6.

I

THEOREM 6: For any matrix Ak = rkk_ipak), let

f A ,ck ,t . 4 ..,knA _ij+ak

lit tl

HA a\
Yk "c"k-1 k-1 "k

Then

A

akbk

-
(3.1) A + =

b
k

where
o .

ck+, if ck #O, .

bk = ,-1 MAO
A ..+ if ck = 0..(1+yki ek .1_1 H+ k1 * .

-33-
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AF

-A*

o

Pr'ocif: Since ck is a column vector, the two cases ck y1.10

and ck = 0 are exhaustive.

, Let X designate the right-hand side of (3.1). Then to

establish the representation for Ai* requires only that we

shocr'the defining equations-in (2.2) are satisfied by Ak

and4X for the two forms of bk.

Formin4 q-(1 and XAk gives

(5.2) AkX AA.
x k-lAk-1 ckbk'

by definition of ck, and

A +A b
k-1 k-1

-A
k-1 , k k k-1

A
k-1

a
k
(I-b

ka k)

(3.3) XAk =
b
k
A
k-1

bkak

Continuing, using (3.2) gives

and

3.5)

AkXAk =
[Ak-1

+ ckbkAk_i, A ak +ckbkakl

Ak.1 +A l+akbkAk.lAk:1+-Ak_i+akbkcvbi,
XA

k
X =

b
k
A
k-1

A
k-1 +c kbkck

since A
k-1

'+c
k

= 0.

Suppose now

AkX =
.

in (3.2) is Hermitian.

c
k

= 0 implies

thus ck+ak = 1,

XAk

tha nd
k

A
kr1A k-1+

+ ck k+

Also, with

c
k
HA 11+ =.0-so

then

[A
k-1 k-1

0

11

b
k

c
k

+
Then"*"-

ck
+
ck = 1, and since

that c
k k-1

= 0 and

in (3-.3) is Hermitian. Moreover,

41



AkXAk 7 [Ak_1,A15_
lAk-1 ak+ck' fAk-l'ak

in-(3.4), and

Ak-1-Ak_1 akb\k

XA
k
X = = X'

b
k

= A,

in (3.5). Having shown that the definink equations hold,
then X = Ak+ in (3.1) when ck

Suppose ck = 0 and bk (1+yk)-1a.
x

H
A H+A +'
k-1 'sk-1 Then

AkX = A
k-1

A
k-I

+

in (3.2) is Hermitian. In thii casej,with

H A--H+ +
Yk 7 -k ^k-1 ak. -

a nonnegative real number and-

bkaa 7 (1+yk)

we have also

1

k 1 (1"k)-1'

,Ak_;+Ak_i-(1+yk) k_l+akakHAk_111+

[

(1+y
k

)
,1

-1

14+

(1+1k)
-1

akH Ak-1 1-(1+yk)-

in (3.3) Hermitian. Furthermore, with b
k k
A%

-1
A
k-1 = bk and,

since ck 7 0 implies Ak_lA0 ak = ak,

A
k
XAk = A

k

An (3.4) and XAkX = X in (3.5).. Thus, what ck = 0 it has been
shown again that Ak and X satisfy the defining equations for
.the given form for bk. I

That the formulas in Theorem 6 can be used not only
directly to construct Ak +

, assuming Ak41
+
is known,-but also

recursively to form A+ for any matrix
0

A is easily seen: Let
A be any matrix with n columns al,...,an, and for k = 1,...,n,

-35-
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t

let At designate the submatrix consisting of the first k

columns of A. Now Al+ .a1+ follows directly from Lemma 5(b).

or (e), and if n > 2, A2:,...,An+ = A+ can be formed

sequentially using Theorem 6.

Example 3.3

Let

-

2 1 0

A = 0 2 -41.

1 1 -3

Then with Al a
l'

A = 1/5(2 0. -1) ,

Ai+a2 = 1/5

and , 2 3

,c2 = a2-Al (Af+a2) = [2 - 1/5[ 01'= 1/5[101.

1 -1 6

Fence

and so

b
2
= d

2

+
= 1/29(3 10 6)

2

=

0 -1)

1/29(3

-10
1/145

1S, 50

- 1/4145(3 10

10 6)

1/29=
30 3 10 6

Continuing,_

A
2
+a

3 3/29+ -58] [ 1]
-58 -2

and ,

.

.. = a3-A2 (A2+a3) = a3 - a3 O.

ill
Thus, w

t
h y3 a 5 and-

-36,
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We have

so that

H H+;J,X
a3 A2 2 = (A2+a3)HA2+ = 1/29(5 -22 -19),

b
3
= 1/174(5

-

11

+ e
1/29

3A
3

=

-22 -191

-2 -7 5 -22\

10 6
- 1/1741

-10 44

1/174(5 -22 -19)

[

61 10 -23

= 1/174 2$ 16 -2 .

5 -22 -19
...

.

As will be'indicated in Exercise 3.7, there is a converse
'

of Theorem '6 which. can be used to construct Ak_i
+

, given
';(Ak.i,ak]

+
. Combining Theorem 6 and its converse thus provides , -

a technique for constructing the Moore-Penrose inverse of a
matrix, A, say, starting from any matrix, A, of the same size
with A+ known. (For practical pUrposes, however, A and A
should differ in a small number of columns.

-191

38i

Exercises

3.1 Let A be any matrix with columns ai,...,an, and let A
+
have rows

wi ,...,wn
H.

Prove that if K denotes any subset of the indices
1 ..... n such that ai a 0, then wi

H
0 for all icK.

3.2 Let A be any mbyn matrix with rank r, 0 < r < min(m,n).

a. Prove that there exist permutation matrices, P and Q, such

that A PAQ has the partitioned form

2

with V r by r and nonsingular.

b. Show that 2 YW
-1X.

c. Construct A +.iii
-37-
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3.3 (Continuation): A matrix (1.1,V),is called upper trapezoidal if U

is upper triangul r and nonsingular; a matrix, B, is called lower

trapezoidal Pf BH is upper trapezoidal.

a. Show that any matrix, A, in Exercise 3.2 has a full rank

factorization A = EG with E lower trapezoidal and G upper

trapezoidal. (Such a factorization A = EG is called a

trapezoidal deoompo.eition of, A. )

Construct A trapezoidal decomposition of some matrix, A,

obtained from

= 2[

1

3

2

4

6

-1 0

0 2

1- 4

Hint: Statt with

.

1 0 0 I 2 -I 0

A = 2[ * 0 0 * * *

3 *, * 0 0 * it-

where the asterisk denotes elements yet to be determined,

and proceed to construct a P and Q, if necessary, so that

the elements e22 and g22 of PE and GQ, respeditIvily, are

both nonzero. (Note that if this is not possible, the

factorization is complete.) Now compute the remaining ele-

ments in the second column of PE and the second row of GQ,

and continue.

c, Compute A+. t.

3.4 Let A = [B,R) be any m by n upper trapezoidal matrix with n > m + 2

and let z
1

be any nonnull vector in N(A). Show that Gaussian'

limination, together with a permutation matrix, Q, can be used to

..--"------------j5

reduce the matrix

1

H

to an upper trapezoidal matrix S, say. Prove now that if z2 is

any vector such that Sz
2

= 0, then Q z
2
cN(A) and (z

I

,Q z
2
) = O.

-38.



r---1,5' Apply the procedure In Czar e 3.4 to construct an orthonormal

basisifor N(A) in Exarc se 3.3.

3.6 Show that tho-tWo forms for [Ak.1004. in Theorem 6 can be written

in a gle expression as

where

[Ak_I-Ak_l+akdkH

dk
H

A H ti -1 :- H A
"k - ck -ck+ck)" -7k' akH"k-1 +"k-1

3.7 Let [k
K-1

,a
k
]
+
be partitioned as

k-1

[A k-1; a
k ]4. =

[G

dk
H

with dkH a row vector

a. Show that

11 A H %-1 11,
ak, ak.A if dkHak pi 1,

Ak-l*
G
k-1

(1-d
k
d
k

.4 ), if dkHak = 1.

b, Construct A
+

if

1 0 -1 0

= 2{ 1 0 2

3 0 1 4

Hint See Exercise 3.3c.

3.8- For any product AS let B1 A+A8 and AI = A8181+. Then

(A8)+ -
( A 1 8 1 )

- 8
1
A

1

. Why does this expression reduce to

Theorem 4 when AB is a full rank factorization?

*3.9 a. Use Exircise 1.3, to prove that if A is any normal matrix,

' + 1 I H
A = E y- xxi

-39-



where E
1

indicates that the sum is taken over indices 1

with eiirovalues Ai 0 0.

Prove that if A is normal, (An)i. (AY for all n > 1.

c. If
1

1,2,3, and

x ---[ 0,
2

, x 1 /3 [1 x
3

. ,

,

2
vz

&Itr
1

2 1

construct the Moore-Penrose Inverse of the matrix, A, for

Which Ax.
1

A
i 1

x.
'

1 = 1,2,3.

3.2 App ications with Matrices of Special Structure

For ny applications of mathe4tics it is required to

solve syst s of equtions Ax b in\iAich A or b or both A

and b have ome special structure resulting from the physical

consideratio s of the particular problem. In some cases this

special strut ure-is such that we can obtain information con-

cerning the se of all solutions. For example, the explicit

form for all so uticfnk of the equations

xi +

given in Exercise .11, was obtained using the Moore-Penrose

inverse of the mat x (I,u) from Exercise 2.10 where u is

the n-tuple with ea element equal to unity. In this section_

we introduce the Con ept Althe Kronecker product of matrices

which scan be used to haracierize all solutions of certain

classes pf problemstk f cfpur in the design of experiments

and in liar program= g.

DEFINITION 2: For y m by n matrix, P, and s by t

matrix, Q = (qkjol, t e Xronecker product of P and

Q is the ms by nt matr x, P X Q,. of the form

P X 9 - Nal')

47-



yt

It should'be noted in Definition 2 that if p;.= (pij)
and Q = (qict), then PxQ is obtained by repOcingeach ele-
ment q" by the matrix quP, whereas Q X P is obtained by
replacing each element piy by the matrix- ;Q. C nsequently
PxQ and QXP differ only in the order in which rows and
columns appear, and there exist permutation matrices R and S,
say, such that Q X P = XQ1S. (We remark also that some
authors, for eiample, Thrall-jandA'ornheim (131, define the
Kronecker product of P and Q alternately as P X Q = (p..Q),
that is, our QXP. In view of the discussion in Section 3.1
of the Moor -Penrose invefses of matrices A and A, where A
is obtained' by permuting rows of A, columns of A or both,
each of the following results obtained using the form for
PxQ in DefinitiOn 2 has a corresi,onding dual if the alternate
definition is employed.)

Example 3.4

If

p

1.0 21 4

3* Oi 2, i

then

0 0 4

0 0 12
P X Q

2 4 i

6 0 3i

and

0 4 -1

QXP
2

0

i

12

3

-3

6 3i 9

'8

. 0

2i

0

0

4

0

0

/
-1 -2'

-3 0

3 6

9

-2

2i 6

0 0

0 0

Given any Kronecker product

Definition 2 that

(3.6) EP X Q111
(ttici)H)

P XQ, it follows f'ro

-41-
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Also, foi. any matrices R and S tskt) with the products PR

and QS defined, the product [P X Q) [R X SI is defined, and we

have by use of block multip ation that

IP X())111 X 5] =

gin') -510 sitR-
,

cim1P *- gmnP

J '
q,.s..PR .

s R . . sntR

cil's*JRjai J J

.

q
'To
.s

j1
,PR .

Therefore,

(3.7) [1:' X Ql IR X 33 = PRI QS.

q -

mj
sjt

1'

The following lemma can be established 'simply byi combining.

the relationships in (3.6) an.d (3.7) to shoW thy' the defining

equations in (2.2) are satisfied.

LEMMA 7: Fsr, any matrices P andigi XQi r X I
Example 3.5

A+construct if

2 0 1 4 0 2 a

2 3 ;1 4 6 -2
A a

6 0 3 8 0 4

6 9 -3 -4

obserlie that A PX Q, where
i

P [2

2 0 1 ..,
i

ri. 2
a

2 3 -1
Q

1.3

41:
.1

49 -42-



'Then we have

so that

Q+ Q_1 ..112{24 -2

-3

A+ - p+

.:43'

° `.5

, P+ = 1- -9 15

17 -8

4

88 16 -44 -A

36 60. 18 -30
68 -32 -34 16

-.66 -12 22 4

27 -45 15
51 24 17

-

Example .6
-!

To construct A+ if

-1 1 0 0 1 0 1 OoT O
1 0 1 0 1 0 olo,o 0 0

1 0 0 1 1 0 o0L16'0 0
1 1 0 0 0 1 0 0 0 l 0

101001d0 0'°0 1 0

1 0 1 0 1 0 0 0 0 0 lj
r--"/ --

observefirstthatifu.clenqtes the vector with all i

elements each equal to unity, then t can be written in .

partitioned form as

A =

I
. u3 13 113 0 13 0

(3.8) A =
. .

u3 13 0 u3 0 1 3

..

Whereupon, the'ftrst two columns of A in (3.8) can be

written as the Kroneckdr product (up,I3)..Xu2. Next observe

that permuting columns;of A' to, form ..:

fo. 13 13. u3 I. 0' 0
A- = '

u3 13 0 0 u3 13 ;
0

the ,last four. columns of M become {u3, I3) X 12. Therefore -

-43.
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9

r
A can be written as

A = (113,13) X (u2,12],

4
and thus

(3.9.) A = [u3,131+ X (112,I2)
+

Permuting rows of JI,u3+ in Exercise 2.10 now gives

so that (

(3.10)

+ 1
(u. , I . ]

1+1

becomes

u H

u,j

(i+1)I.-u u

X

41
3
-u
3 3
u

H
3I2 -u2u2H

u2
H

Substituting numerical values into (3.10), a .suitable per-

mutation of rows of A+ yields A+. V

401

Matrices; A, as in Example 3.6, with elements zero or

one occur frequently in the statistical design of experiments,

and the.technique ofintroducing'Kroneeter products can often

be used to construct A+, and thus all solutions of systems of

equations Ax-1-=-b by use of Exercise 2.21. The additional

restrictions on Ax

properties can then be formula

N(A) or, equivalently, I-A+A. .,(See Exercis .11.)

That Kronecker products can be combined wi h form's for

Moore-Penrose inverses of partitioned matrice to construct

A+ for other classes of'straglars-d_matr-i-c-e-s-41--gbrwn-by the

representation in Theorem 8.

obtain solutions with particular

terms of conditions on

THEOREM 8: °Let W be any m by n matrix, and for any positive

'integerplet__=(pI
n
+W

H
W)

-1
. Then

-44-
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(3.11)

X1
[G
P

,W+
XI

P
- G

P
W+ Xu

P
u
P
II]

14

Observe first that with

(pIn+WHW)(In-W+W) =,p(In-leW) = (In-leW)(pIn+WHW)

then

:(3.12)
. pOp(In-W+W) = p(In-leW)Gp,

Also, observe that with CpIn+WHW)le = + WH, the relation
A

(3.13) = pG le + G WH,

together with the fact that G is

WG le
P

'= ii)-(WW+-410WH)

is Hermitian.

Let

and let

[In X uplil
A =

W X Ip

Hermitian, A lies

X = [G X u X I - GP u u
P P P P P P

Then it follows from (3.12) and (3.7) that

XA =G
P
XuP uP H+ W+WXI

p
-G

p
W+WXuP uP H

= Gp(In-W+W) XupupH + P/N XI

= 11-41n-W+11) XUpupH + W+W X Ip

is Hermitian. Also, with u
P
Hu

P
= P,

3.

-45-
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AXA =

1(I
n
-W+W) Xpu H + W+WXu H

P

1W(I -W+W) X u'u H + WW+W X I
p n P P P

/
Continuing, we have ,

-/--------
,

XA(GX u ) = 1(I 1: W+W)G X pu + WWG X u = G X u
P n P P P P P P'P p

XA(w+ X Ip) = 1,-(In W+W)'W+ X upupH + w+ww+ x II, = v+ X Ip,

and JP

XA(G
P

W+ X u
P
u
P

= -
p

H)
1
-(I

n
-W+W)G

P
W+ X pu

P
u
P
+WWG

P P
W+ X u u

P
HH

I Xu H
P P

IV X ip,

= A.

GW+ X upupH:

Hence, XAX = X. Finally, f6ming AX gives

pG W+X uPH Gple X Pupil

AX =

WG
P

-X up WW+ X I - WG-W+ X u
P P

H

Now

W+
xn H

P

w+ y

P

H wH

by (3.13), which, with Gp and WG W+ Hermitian, implies

(AX)H AX.

Having shbwn that A and X satisfy the equations in (2.2) gb,

then X = A+ which establishes (3.11). -111

Example '3.7

If p 7 3, then for any m by n matrix, Wit

X u3

W X I3

In In In

0

0 .W 0

0 0 W

-46-



and

G
3

le-G
3
le -G

3
le -G

3
le

In x

WXr3
G
3

-G
3
le -G

3
le

- G
3

-Gse le-G3W+ -G
3
le

where G3 (3/4.0wy-1.
3 '

Suppose' now that we let T - T(P.W) denote the matrix in
Theoi.em:8 which is completely determine by p and the sub-
matrix W, that is, -

) o

n ')(u pH

T T(PoW)

1.1

Now given 'a syste3 of equations Tx - b with W m by n of
P
rank

r, 0 < r < n, and p any positive integer it follows thatif
we partition x and b as

x(1)-

X

x(05

with x (1) (P)

b

OP)

and b
(o)

n-tuples and (1) ,...,b(P)

then x is a solution if and only if

P .

y

(3.14) Ex()) b(4))
j=1

and
i.

.:(3.15) Wx()) - b()), j - 1,...,p

wge

m-tuples,

";.

other words, each x(j) must be a solution of m equations'

n unknowns, subject to the condition that the sum of the

solutions is equal to b(°). These characterizations are

-47-



further explored for the general case of an arbitrary matrix,

W, in.Exercises 3.16 and 3.17 and for an important special

case in Exercises 3.18 and 3.19.

Exercises

3.10 Complete the numerical donstruction of A+ in Example 3.6 and

verify that A and A+ satisfy the defining equations in (2.2).

3.11 Matrices of the form Au
P P

and, more generally, Kronecker

products suchs A in Example 3.6 in which at least one of the

matrices has this form occur frequently in statistical design of

experiments (1)(4). For example, suppose it is required to

examine the effect of p differ t fertilizers on soy bean yield.

One approAh to this proble is to divide a field into 04 ,subsec-

tions itatted-plots),-ranAomly assign each of the p type of

fertilizers to q plots, and measure the yield from.each. Neglect-

ing other factors which may effect yield, a model for this

experiment has the form

(3.16) +
j

where yij is the yield of the jth plot to which fertilizer
i has

been applied, m is an estimate of an overall "main" effect, ti

an estimate of the effect ofthe.particuiar fertilizer treatmentoc,

and eij is the experimental error associated with the particular

Thequestion now is to determine'm and t ], t to mini-

mize the sr of squares of experimental error, that is,

2

, Pftl jmi

a. If y .anAOd e denote the vectors

and

Y
p2 Ylq,...,Ypq)

e = (e
11'

...,e
pl

,e
12 '

e
p2'

...,e
lq .... ;

e
pq

)
H

,

show that data for the model in (3.16) can be represented as

(3.17) y Ax + e,

where x t )H and A [u I ) )(up, q.:
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3.12 (Continuation): Given the exper)mental situation described in

Exercise 3.11, it is sometimes assumed that there is another

effect, celled a block effect, present. In this case one of two

models is assumed: First, if there is no interaction between the

treatment and block effect, then

b. Show that r(A) an4 construct the minimal norm solution

r ey, to (3.17).

c. For.statistical'applications it is Also assumed that

Starting with 2 from ).1112A.122ye, construct that solution X,

say, for which this additional condition 'holds.

(3.18) yij = m + t. + b. + e
j ij.

whereas if there is an assumed interaction between the treatmen$

and block effect, then.

(3.19) yij = m + ti + bj + (tb)ij + eij,

where yij, m and ti have thetame meaning as in (3.16),

bj,j=1,...,q, designate block effects, and (tb)ij,i=1,..,p and

j=1,...,q, designate the effect of the interaction between treat-

ment i and block j,

a. Using the notation for y and e from Exercise 3.11, show that

the data for the model in (3.18) can be represeritegl as

y = A
1

x + e,

Hwhere now x = (m,t1,...,tp,b1, ..,bc) and

A

1

= [(ts

P

xj

P

) Xu ,u XI ]
gi

b. "how that the data for the model in (3.19) can be represented

as

y = A2x + b

where



and A2 = [[up,y Xuccup)(IcrIp)(Icli.

c. Use the procedure of Example 3.6 to construct A2* and thus

the SoFution X = A2+y. (For statistical applications the

model in (3.19) is not meaningful un-less there is more than

one observation for each pair of indices i and j, that is,,a

model of the form

Yijk.% m + ti + bj + (tb)ij + eijk

where k = 1,:..,r. In this case the unique solution is obtained

by assuming

I t. = b. = -6 and also ! (tb) = 7 tb).. . 0
j=1 ,i=1- j=1 1-1

for all i and j. Note, in addition, that the construction of

in 3.12a above is somewhat more complicateal, but can be

formed using related te'chniques. The particular solution used

for statistical applications in this case assumes that

t. = b. = 0.)
1=1 1 j=1

*3.13 Show that if P and (Care any square matrices with x an eigenvector

of P corresponding to eigenvalue X and y an eigenvector of Q cor-

responding to igenvalue p, then x)(y is an eigenvector of P )(Q

correspOndi to eigenvalue Xp.

3.14 a. Show that for ahy p and W, I-T47 = (In-W+W))r(Ip-yp+).

*b. Construct a complete orthonormal set of eigenvecgrs for

3.15 Prove directly that for any m by n matrix W of rank rand any P.

rank411"),'= n + r(P-1).

3.16 For any system of equations Tx = buwith x and b partitioned to

give (3.14) and (3.15), let X and B denote the, matrices

X =
'

a. Prove that Tx = b if and only if there exists a matrix X such

that

*- 50 -
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$

(3.20) Xup = 11(°)

and

(3.21) MX = B.

b. Prove that a necessary condition for a solution, X, to (3.20)

and 13.21) to exist is WeB = B and,14b(°)'0 Bu

*3.17 (Continuation): For any eigenvector ziXy; of Inp-T4T, where

yj has components let denote the matrix

-
Z = (y z i,...,yipzi).

ShOW that z. Xy
j

corresponds to eigenvalue A.y. w 1 if and only if

andL
.4

u 0 0
11 P

(3.23) WZ.. = O.

3.18 The transportation problem in linear programming is an example of

a problem in which it is required to solve a system of equatioas

Tx = 4. This famous problem can be stated as follows: Cbnsider

a company with n plants which produce al ,, ,, an units, respectively,

of a given product in some time period. This company has p

. distributors which require bi ..... bp_units, respectively, of the

product in the same time period, where ,

101 j01

,

If there is a unit cost c
1.1

for shipping from plant I to distributor

J. 1 1,...,n and"j01 ..... P. then how should the shipments be alio-

cateein order to minimize ;otal transportatidh cost? This problem

can be illustrated in a schematic form (called a tableau) as shown

in FliUre 6 where 01 ..... On designate origins of shipment (plants),

DI ..... Dp designate destinations (distributors) and for each I and

ij
denotes the number of units to'be shipped from 0 to D .

The problem now is to determine the xij, 1=1 ..... n and j01,...,p

to minimize the fatal shipping cost.

-51-
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D1 . . . D.
J

. . . D
P

o
1

till

. . .

cid

. .

cipi

xii xli xlp

. . .

.

.
,

.

0
1

iciii
cil

.

a i
xii xij

_bid

xip

.

. . . . .

.

0
n

coif

. . .

c
nj

cnp

x
np

a.
nxni.

bi . . hi bj . . . b
P

.0.

la. = b.
il jJ

Figure 6s The transportation prOblem tableau.

(3.24) ! c..x..,
isi j=1 'J "

subject to the cond1tFon4, that

1

(3.25)

and

(3.26)

! x
ij

= a
1,

.101

i xi, = bj,
1=1 J

1 =

1=

1,...,n,

1,...,p.

t

Also, we must haye xij > 0, for all i and j, and, assuming frat-

tional units cannot be manufactured or shipped, all a1, bj and xij
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'A
integers. (This iait requirement that the, x. are integers. ) j
follows automatically when the ai and bi are 16) .)

a. ShOw that if the x in Figure 6 are eiements of an n by p
matrix X, and -if [al then the conditions in
(3.25) can be written as Xup = bt°)and the conditions in 4'(3.26)
become

unHX =

Therefore; (3.25) and (3.i6) together imply that any set of
numbers xij which satisfy the row and column requirements of
the. tabieau is a solution of Tx = b where T T(p,un8) and
b

b. Prove that if T = T(P,unH), then

r Li 1 xux __Lu uin -n+p nun p n.fp p p
. ,41

Moreover, show that f is the element in row i and column
j of the tableau form of A = rb, then

p
lIa + lb - -Z a;ij n np

. 1-1

..... n and j=1 ..... p.

Shdit that rank (T) n + p - 1 when W u nH, and thus rank
1+1) (n-1)(p-1). Also, construct a complete otrho-np

normal-set of eigenvectors of I nob- T+T, and show that zi y.
is-an eigeovector corresponding to elgenvalue A.y. = 1 if andjonly if all row sums and column sums in the tableau fopm are
zero. .

d. TheTvector g (I.np - '["pc is called the gradient of the
-inner product

n p
(c,x) I c jxii.3.1

in (3.24)t. Show that the elements, i,n the tableaglIbrm
for g can be written as

-53-
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n n p
g.. = c. - L c.-I . ! c . c.',

1 r . 1

i j ij rr
1=1 I P j=1

ij
i't ij

\

x 1

3.19 (Continuation): The transportation problem has been gneralized

in a number of different ways, and one of these exteesiOns follows

directly using matrices of the form T = T(P,w). Suppos that we

for i = 1,...,n and j =1,. .,p.

+ I
np

are given q transportation problems, each with n origins

destinations,andleta-6-(0)sociikandxiikbe the row s

umn sums, costs and variables, respectively, as'sociated w

k
th

tableau, k=1,...,q. A "three-dimensional" transporta

Problem is now obtained by adding the conditions that

and

MS,

for i=1,.

integers.

th

on

col-

the

..,n and j=1,...,p, where dil,...,d
np

are given pos tive

(The-choice of nomenclature "three-dimensional is

apparent by noting that if the tableaus are stacked to form a

parallelopiped with q layers each with np cells, then (3.27)

simply implies, np conditions that must be satisfied when the
ijk

are sunned in the vertical direction as shown in Figure 7, whe e

only the_row, column and vertical sum requirements are indicat

a. Show that the conditions

.! a. = 1 b. k=1 q
ik jk' '

j
"

i=1 =1

a.,.= ! d,.,
k=1 1- j=1

b. = i'd.1( 11, ...,P,
j 1=1 J L

d.)

are necessary in order for a three-dimensional transportation

problems to have a solution.

b. Show that the

isa solution can be written as

conditions which the x-.
ijk

must satisfy if there

Tx = b where T = T(q,w) with
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., . e

b .. . b, .. .. b

... ... ... ... ...

b
1 k

bjk ... bpk

... ... ... . .

,
b11 b

j 1
bpi

.
._

Figure 7. The parallelopiped requirements for the
tableau of a threi-dimensional transportation problem.

W ' Thp ' I

74
LP,11

n

H
) the matrix for the "two-dimensional trans-

portation problem in Exercise 3.18 and a suita vector b.

c. Show that

Gq
(clInp Infrnp) -1

[11 - u H.20[ t-;-+q up

[

I n + + 2

'1117'041P (P+q) n+P+q Yip
li

7and that G
q

1

np
+

[U,V) where

;
U .,76747iT

1 I 2n ,r+ +

n+P411 uPul, Xun

-SS-

02

u
Aun ,



and

p)(714-(in (rn11Z40:b ununl.

3.3 Miscellaneou Exercises

3.20 Prove that a ne- ssary and sufficient condition that the'equations.

AX - C, XB - 0 h ve a common solution is that each equation has .a

solution and the A0 * CB, in which case X * A+C + 011* - A+A011+ is

a particular solu ion.

3.21 Prove Lemma 7.

3.22 Prove .that ."

for any matrix B, an that

if + BHBYI + (
+
B
H+)-1

- 21 - B
+
B.

0

63
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4

1,

4

Drazininverses ,

,,

< .

4.1 The Drazin rnVerse of a Square Matrix

\. . .

In this secp,on we, consider another type Of.generalized

inverse for square complex matrices. \
The inverse in Thebrem.

.

9, dpe to Drazin (3), has alNariety ofapplications,

%

THEOREM 9:. For any squarelnatrix, A, there is a uhique
matrix X such hat

.

(4.1) Ak = Ak+1 X, for some positive integer k,_

(4.2) X2A

(4.i)
.

Proof: Obsefve/irst that if A = 0 i$ the null.matrix, then

A and X = O'sattsfy (4.1), (4:2) and (4.3).'

AX

Suppose A 0.0 is any hbyn Matrix. Then there exist

scalars141,..;.At, not all zero, such that

t ,
dVe = 0,

64



where t < n
2
+1 since the Al can be viewed as,vectors with n 2

elements. Let d
k
be the first nonzero toellicient. Then we

can write

(4.4) Ak = Ak +lU,

where

U = - 1 E d,Ai-k-11
-k i=k+1 1.

Since U is a'polynomial in A; U and A commute. Also, multi-

'plying both sides of (4.4) by AU gives

Ak
k+2 2 k+3 3A = A U = Ak +3U3 P

and, thus

(4.5) . Ak =Ak+m U m

t\
;for all m 1.

Let X. AkUk+1 . Then for, tHis 'choice of X,

A
k+1X = A 2k+1

U
k+1

= A
k

and

X2A = AkU k+1 A k U k+1 A = (A2k+1 Uk+1 )U
k+1 1 =yr,

by use of (4.5). Also, X and A commute singe U and A commute.

Thus the,conditions (4.1), (4.2) and (3) hold for this X.

To show thatoX is 'Iglique, suppose that Y is also a

'solution to (4.1), (4.2) and (4.3), where 3t corresponds to

an exponent k1 and Y corresponds to an exponent k2 in (4.1).

Let i = maximum (kl,kz). -Then it follows using (4.1),'(4.2),

(4.3) and (4.5) that
A A A A

X2A X3A2

,
xk+lAk xk+lAk ly

= X#Y = = XA
k+

.Y
k+1

= A Y
i+1

Ay2 y2A

to estab;ish uniqueness. I
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We will call the unique matrix X in Theorem 9 the Drazin
inverse of A and write X alternately as X = Ad. Also, we
will call the smallest k such that (4.1) holds the index of
A.

That Ad is a generalized inverse of A is apparent by
noting that (4.1) holds with k = 1 when X = A-1 exists and

also (4.2) and (4.A) hold. Observe, moreove1 that in
general (4.1) can be rewritten as

(4.6) AkXA Ak

and (4.2) bedomes XAX = X, by use of (4.3), so that the

defining equations in Theorem 9 can be viewed as an alterna-

tive to those used for A* in which AXA = A is replaced by

,(4.6), (1.2) remains unchanged, and (1.3) and (1. ) are

replaced by the condition in (4.3) that#A and X commute.

(Various relationships between Ad and A+ will be explored

in the exercises at the end of this section and in Section
4.3.) ,

As will be discussed 'following.the proof of Lemma 10,
full rank factorizations of A can be used effectively in

the construction of Ad.

z
LEMMA 10: For any faxtorization A = BC, Ad = B(CB)d C.

Proof: Observe first that for any square matrix A and posi-

tive integers k,'In and n, we have AdmAn = Adm-n if m > n and
Am +nAdn = Am if m > k and A has index k.

Let k denote the larger of the index of BC and the
index of CB, Then

A,
a = (BC)d = (BC)k+1(BC)dk+2 B(63)kc(Bc)dk+2

o

= B(CB) dk+2(CB) 21+2C(BC)dk+2

111=111,

,= B(CB)dk+2C(BC) 2k+2
(BC) dk+2 = B(CB) dk+2C(BC)k

= B(CB)dk+2 (CB)
k
C = B(CB)d2C.

41 -59-
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Suppose now that A = B1C1 is a full rank factorization

where rank (A) = r1. Forming the ribyri matrix CIB1, then

either C181 is nonsingular, or cols. 0, or rank (C1B1) = r2

where 0 < r
2

< r1. In the first case, with C1B1 nonsingular,

(C1B1)d = (C/B1)-' so that Ad.= BI(C/B1)-2C1, by Lemma 10,

where

(C1B1)
-2 A 1

[(C/Bij I 2
.

e

On the other hand, if C1B1 = 0 then (ClBl)d = 0 and thus

Ad = 0 by again using Lemma 10. Finally, 4f rank (C1B1)

= r2,0 < r2 < r1, then for any full rank factorizati

C1B1 = B2C2, we have

(C B ) B (C B ')
2C

1 1 d, 2 2 2 d 2 ,

so that Ad in Lemma 10,becomes Ad = BIB2(C2B2)d
3
C2C1. 'The

same argument now applies to C2B2, that is, either C2B2 is

nonsingular and

(C2B2)d
3

(C2B2)-3,

or C2B2 = 0 ana thus Ad = 0, or rank (C1B1) = r3 where

0 < r3 < r2, and C2B2 = B3C3 is'a full rank factorization to

which'Lemma 10 can be applied. Continuing in this manner

with

rank (BiCi) > rank (COO = rank (13/1.1C/41)1P i=1,2,...,

.then either BmCm = 0 for some index m, and so Ad = 0, or

rank (BmCm) = rank (CmBm) > 0 for some index m, in which case

(BmCm)d = Bm(CmBm)-2Cm

and thus

(4.7) Ad = B B B (C B )
-m-1

C C . C
d 1 2 m m m m m-1

C1

in Leva 10. Observe, moreover, that with A .1 B1C1,

A2 = BIC1B1C1 = B1i2C2C1,..., Am = B1B2 .,.. BmCmCm./ ... C1

and

-60-
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0

(4.8).- Am +l B
1
B
2

.. B
m
(C
m
B
m
)C
m
C
m-1

C
1

we have either Am = Am +l - 0, an`d Adr 0, or that Ad has the

form in (4.7) where, since each Bi has full column rank and

eachC.has full row rank, $

and

4

B B Amt- C Bm-1 1 ,1 m-1 m
C
m

'...B
+Am+1C C = C 8 .m 1 1 m m m

Th'erefore, in both, cases we have rank (Am) . rank (Am+1).

Furthermore, it-follows in both cases that (4.1)'holds for

k = m add does not hold for any k < m. That is to says k i

(4.1) is the smallest positive integer uch that Ak and A k

have the sate rank.

Example 4.1

If A is the singular matrix

A =

[6 4

03 5 -3

3 3 -1

written as the full rank factorizlipon

[1: .21 2 -2
A B1C1

t

1 ]

1 1

then

C 18/
6 8

is nonsingular, so that A has index one, and

-61-
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P.7

441

6 -26 30
-2 . 1

Ad ' CI = u 3 35 -33

3 3 -1

Example 4.2

If A is the matrix

-7 0 0 0

0 0 1 ,2

A=
0 0 0 3

0 0 0 0

with A = B1 C
1

the'full

A = B C
I

=

where
As

CiBi =

.2

rank

-7 0 0-

0 1 0

0 1 1

0 0 0

17

ni 0 0

0 1 1

0 1 1

factorization,

1 0 0 0

0 0 1 2

0 0 -1 1

,

a-

then rank (C1B1) = 2 and

C
1
B
1
u 0 1

7
0 0

B2C2 .
0 1 1

0 -1
.

.

[

is a full Jank factorization. Continuing,

71 01'
C B =
2 2 0 01',

so that

C
2
B
2

B
3 3 0

= [7} El 0]

is a full rank factorization with C
3
B
3

= 7. Hence A has

index three and Ad becomes

- 69
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s ,

Ad u,81132B3(C3B3) -4
C3C2c1

1

343

o

0

0

[1 0 ,o o]

7
0

o '0

0 """'0

0 0

0

0

0

0

0

0

0

0

2401

For the special case of matrices with index one we have

(4,9) AAdA T.= A, AdAAd = Ad, AAd = AdA,

so that

(4.10) (Ad)d =

by the duality in the roles ofi,A and Ad. Conversely, if

(4.10) holds, then, the first and last relations in-(4.9)

folio* from the defining relations in (4.2) and (4.3) -applied-

to (Ad)d and Ad, and the second relation in (4M is simply

(4.2) for Ad and A. Consequently, (4.10)N7ilolds if and only
if A has index one. In this special case the Drazdn inverse

of A is frequeritly called the group inverse of A, and is

designated alternately as A#. Thus X = AM, when it exists,

is the uniqUe solution of AXA = A, XAX = A and AX = XA, and

it follows from Lemma 10 that for any, full rank factorization/
A . BC, A# = B(CB)-2C.

Exercises

4.1 Compute Ad for the matrices

8 5

Al 4 S 31, A2='a.

5 7 4

1 1 2 -1
2 3

:
1 0 1 . 0

0 -1 A3=,

0 1 0 1

0 0 0
-2 -2 .-3 o

4.2 Given any matrices B anclt of the same size where B has full

column rank, we will say that C'is alias to B if 11+ = (CHB)+CH..

a. Prove that if C is alias to S, then CHB is nonsingular.

Show that the set of all matrices alias to W fohm an

equivalence class.
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c. Prove that A
d

A+ if and only if C is alias to B for any

ful! rank fdctorization A BCH.

d. Note, in particular, that Ad A+ when A is Hermitian.

Prove this fact directly and also tly using the result in

4.2c above.

4.3 Prove that (AH)d = Ad
H
and that ((Ad)d)d Ad for any matrix A.

4.4 Prove that Ad 0 for any nilpotent matrix A.

4;;,5 Prove that [11 X Qld P, X Q., for any square

is the index of 41) X Q?

matrices P and Q. What

, 4.2 An Extension to Rectangular Matrices

The Drazin inverse of a matrix, A, as defined in

Theorem 9, exists only if A is square, and an obvious question

is how this definition can be extended to: rectangular patrices,

One app oath to this problem is to observe that if B is a

m,byn h m > n, say, then B can be augmented by m-n columns
a.... .

of zeroes to form a square matrix A, Now forming Ad, we

might then take those columns of Ad which correspond to the

locations of columns of B in A as a definition of the "Drazin

inVerse" of B. As shown in the foIlowing,oxample, however,

the diffi'culty in this approach is that there are

{ 1m-n)
such

matrices A, obtaihed by considering all possible

arrangements of the n columns of B (taen without any permuta-

tions) and the m-n columns of zeroes, and that Ad can be

different in each case.

O

Example 4.3

If

1 /
B =

3 11

and
# .

0

Al , 0

0

1

0

3

2

1

-1

, A2 ..

-64-

1 0

0 0

3 0

2
v.,

1

-1

, A3 =

1

O.

3

2 0

1 0

1`
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then

(Ai)d 0

0

1

(A3)d = 10

3

10

3

9

-2

1

-41

7

3'1

0

0

0

0

0i2)d = 0

3

0

0

0

are obtained by applying Lemma 10 to the matrices Ai = BCi
where

p
Cl =

f
i.0

0

1],
C2

[0 0 1]

1 0

2 3C
[0

0

1 Of

1 01

Observe in Example 4.3 that the nonzero columns of each

matrix (Ai)d correspond to the product B(CiNd 2
. Conse-

quently, using the nonzero coldmns of (Ai)d to define the

"Drazin,inverse" of B implies that the resulting matrix is a
funetioaofCThat such matrices are uniquely determined
by a, set of defining equations and are special cases of a
class of generalized verses that can be constructed for-

any matrix B will be ap nt from Theorem 11.

.1 THEOREM 11: For any mby ft matrix B and any abym matrix W,
there is a unique maiiix X such that

(4.11) (BW)k
1. '

some positive integer,k,

(4.12) XWBWX =-X,

(4.13) BWX = XWB.

Proof: Let X = B(WB)d2. Then with XW =.B(WB)d2W = (BW)d,

by Lemma 10, (4.11) holds with k 'Ole index of BW. Also,

XWBWX = B(WB)
d
2
WBWB(WB)

d
2
= BIWB)

2
=

and

pa BWB(WB) 2 =
-

so that (4.12) ana

0

4'
= XWB,,-

7.2



To-show that X is unique we can proceed as in the proof
,

of Theorem 9.' Thus, suppose X1 and X2 are solutions of

(4.11), 44.12 and (4.13) corresponding to positive integers

k
1

and k2, re pectively, in (4.11). Then with

k = maximum ( 1,k2), it follows that

XI = X1 BWI, = BWX,WX, =.(BW) 2
(X1W)

2
X1

= = OW) k
TX_1 W)

k
X, = (BW)

k+1X
2W(X,W)

k
X,

= )
k+1

.W(X
1
W)

k
X
1

= X
2
WB (BW)

k
(X

1
W)

k
X
1

4 B X
l'

,entinuing i a similar manner with \

then

Xk = = v2wx2wil = x2(wx )

X (W
k+ B)k +1

,

X
2
WBWX )k+1(wB)1,(+1wBwx1

e(WX2)1C+1W(BW)k+1X1WB

)k+lw(Bw)kB

1

.

Th refore, with X1 I= X2, the sorution to (4.11), (4.12) and

(4c 3) is unique. U .
.

.

,....
[

k+1
(WB)

k+1 !le
2'

[

The unique matrix, X, in Theorem 11 will be called the

W-we'ahted Drazin inverse of andand will be written alternately

as X = (Bw)d.

he choice of nomenclature W-weNhted Draiin inverse of

B is asily seen by noting that with (Bw)d = B(WB)d2, then
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w(Bw)d = Bd when B is sckare and W is the i. ty matrix.
0%. Also, observe more generally that B and (Bw)d of the

same size and with W and the size of BH, the relatipn

BW(Bw)d = (Bw) W (4.13) can be viewed as a generalized
commuta ty condition, and (Bw)dWBW(Bw)d = (Bw)d in (4.12)

analogous to (4.2) when written inthe form XAX = X.

Example 4.4'

If

I-1 2

B = 10 1

1.3 -1

is the matrix in Example 4.3, and

1

WI [3
2 4

-1 -2
W2

then

169 338

d =
' 1

60 169 ,----T
(91)

87 -169

3

0

1 1

1 ['
(Bw )'d =

IT I)
01 .

2
3 3

Exercises

4.6 Verify that, B and (Bw)d satisfy the defining equations in Theorem

11 for W = ri, C2, C3 in Example 4.3 and for W = WI4 W2 in

Example 4.4. \

4.7 Provle that E =
a for any Nempotent matrix E, and thus that

(Bw)a AP B2Bd when 8 is sqUare and W = Bd. (Consequently,

(Bw)d =.B when W = Band B has index one.)

4.8 Show that if WH is Any matrix alias to B, then (Bw)d = W+(WB)-1.
/

4.9 Psove that (Bw)d = BH+13+0+ for,any matrix B when W = BH. (Note

that this result' follows at once from Lemma 5(f) and Exercise

4.8 if B has full column rank, whereas Lemma 5(f) and Exercise\

4.2d can be used for the general case.)
,
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4.3 Expressions Relating Ad .and4A+

It is an immediate consequence of Exercise (.9 that if

W = BH and so

(Bw)d = BH+114.11H+,

then

B = W(BOdW.

Thus, using'- weighted Drazin inverses with W = BH ,(Bw)d and

13+ are related directly in terms of products of matrices

which implies that (Bw)d and 11+ have the same rank.4._In con-
.

trast, for any square matrix, . A, we have

rank (Ad) = rank (Ak ) = rank (Ak+1 ),

with k the index of A, whereas rank (A+) = rank (A). There-

fore, rank (Ad),< rank (A+) with equality holding if and

only if A has a group inverse: The following result can be

used to give a general expression for the Drazin inverse of

a matrix, A, in terms of powers of Aand a Mdore-Penrose

inverse.

THEOREM 12: For any square matrix A with index k,

(4.14) Ad = A
k
YA

k

for any matrix Y such that

(4.15) A2k+1,-tA2k+1... A2k+1.

Proof: Starting with the right-hand'side of'(4.14) we have

k k k+1 2k+1 2k+1 k+1A YA = A A YA A
d

'N

k+1
A
2k+1

Ad
k+1 Ad2k+2A-21.+1. 41

= A d

-.-

Obsezlve'in (4.15) that de obvious choice of Y
(A2k+1) +, and it then follows that Al,(A/)* InikA

d
hake the

same rank for every positive integer .R. >k. In AMils case,
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various telationships among Aft,(A1) and Ad can be

established. For example, it can be shown that for any i > k,

there is a unique matrix X Altisfying

(4.16) A XA
t
= AI, XA2A = X

and

4
(4.17) (X.44)H = XA A2' = AAd.

Nally, there is a unique matrix X satisfying (4.16) and
.

(4.18) (A
it

X)
H

= A it X, XA1 = AA
d'

The -Unique solutions of (4.16) and (4.17) and of (4,16) and

(4.18) are Called the ef* and right power inverses of AR,

an re desi 'gnated as (A2')/, and (A )R. More-

,

overOt can be shown (Exercise 4.11) that
c

.(4.19)' (A1)L ' (AL)
+
AAd, (A14" = A d A(AL)+.

and (Exercise 4.414) that 6414 and (Ag)Fccan be computed

using full tank faCtorizatiods.

'Exercises.

4'.10. Show that if
.

A and W satisfy A4WA1 AI and (WAI)H 0 WAR for any

/peslt,ive integet.4,then WAR (A1)+Al, and copversely, What is

/ the dual fol:m.of Oils result for*A1W?

1 Prove that (A0 )l in' (.4.19) is the Unique solution to (4.16).and

(4.17).

4.12 Prove that for every it >,k, (A1)4. ;:4At),

6
At(At)a and

.

Ad (A
R.

) A
-1

(A
it

IL.

4.13 Use a sequence of full rank lIctorizations

-A : BIC', n.2 B1B2C2C1,...,

to show that A
ft

(A
it + .

A
k k

)

+
and (A )

+
A (A

k
)

+
A
k

for all R>k.

4.14 (continuation): Show that
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A

,

an/

'

[1=1

+ k

1c+1-1
(C
k
B
k
) C

k+1-1

(At)
R
= [It

i
1(c

k k
)--ill

i
:

i.1 1=1

k

4.15 Construct (A2)L and (A2)R for the matrix A in Example 4. 1 a

4.6 -Prove that if Ax - b'is a consistent system of equationspnd if A

has index,one, then the general solution of ex = bp'n t,2,...,

canbe written as x = A
R
nb + (I-A A)y where y is arbitrary (Note

that this exPre

The terminology

powlss.of )n

of AIX w b.)

4e
4.4 Miscellaneous Exercises

4.17 Let B and W be any matrices, m by n and rt by m, respect!

L

ssion reduces to x = A b when A is, nonsing iar'.

"power inverse" of A was chosen since we use

a similar manner to obtain a particular solution
. 0

6

A

let p be any positive integer.

-

z.

t there is'a unique

(BW)
d
XW' = (SW)

a unlq -trix X such that

matrix X such that

BWX - XWB, BW(BW)dX - X,

lb

XX = BW(BW)dP, WX - WWI)
d
P XW(BW)P71X = X,

4 --

and/that thi unique X which satisfies both sets of equations

is X B(WII)dP.

Show that if p > 1, q > *1 and r > 0 are integers sych that

+ 2 - pt and if (W13)41 .0-(WB)d when q.. -1, then

B(Wit)d4. gwrogit(wWwmetwoqmd2.

q..,+ 2r

,7

(C46equently, the unique X in 4.17a is the.(WB)r W0weighted

Drazin inverse of 13(WB)q.)

4.18 Prove that if A and B are any matrices such that Ad
2
- Bd

2
, then

AA
d

BBd.

--



. o

3,

r

4

r Generalized Inverses
0

5.1 Inverses That Are Not Unique

Given matrices A and X, subsets-O.-Ithe relations' in

(1.1) ,to (1.5) °the; than those used to define A
+

and Ad

provide additional types of generalized inverses. Although
not unique, some of t1iese4generalized inverses exhibit

essential properties of A required inzvarious applications.

For example, observe that only the contition AXA = A was
needed to characterize consistent systems of equations

Ax m b by the relatiqfi AXb = b in (2.4)'. Moreover, if A
and Xi also satisfy )

H
= XA, then XA m A

+
A, by Exercise

' 4.10, and with A
+
b a'particular'solution of Ax = b, the

general solution in Exercise 2.21scan be written as

x m A4) + (I=XA)y
/

with the orthogo decomposition

II 12 - 11A+13112 Il(i-xA)y112.
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(Note that*thig is an extension of the special case. of
. -

matrices, with fulprow rank used in the proof of Theorem 2.)

In this section we consider relationships among certain of

these generalized inverses in terms orfull rank factoriza-
.

tions, and illustrate the construction of such inverses with

numerical examples.

For any A and X such that AXA = A, rank (X) > rank (A),

whereas XAX = X implies rani( (X) < rank (A). The'follOwing

lemma characterize's solutions of AXA = A and XAX = X ih

terms of group inverses.

LANA 13: For any pull rank factorizations A = BC and

X = YZ, AXA * A and XAX = X if and only if AX = (BZ)#BZ and

XA = (YC)#YC.

Proof: If A = BC and X = YZ are full rank factorizations

where B is m by r, ,C is r by n, Y is n by s and Z is s by m, then

AXA = A intplies

- (5.1) CYZB = Ir;

and XAX = X implies

5.2) ZBCY = Is.
s

Consequently, with r = s, ZB = (CY)-1 so that

and

AX = BCYZ = B(ZB) -1 Z = (BZ)#BZ

XA = YZBC = Y(CY)-1C,=

by Leima 10.

Conversely, since Z and C have full row rank, (BZ) BZB= B

and (Yt) YCY = Y., Hence AX = (BZ) BZ gives AXA = A, and

XA = (YC)
4
YC gives XAX = X. I

"it should be noted that the relation in (5.1) is both

necessary and sufficient to have AXA a A, and does not

require that YZ is a full rank factorisation. Pually, (5.2)

is both necessary and sufficient to have XAX = X, and BC

-72-
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need not be a full rankfactorization. Observe, moreoven,

that given any matrix, A, with full ran factorization A = BC,

then for any choice*of,Y suchthat.CY has full column rank,

taking Z = (CY)LBL with (4CY),, any left inverse of CY and B

any left inverse of B gives a matrix X = YZ such that (5.2k

holds. Therefore; we can always construct Matrices, X, of

any given rink not exceeding the rank of A with XAX = X. On

the other hand, given full rank factorizations A = BC and

X - YZ such thaUAXA = A and XAX = X, then for any matrix U

with full column rank satisfying CU = 0 and for any matrix V

with ,PVA defined we have

A(Xl+UV)A = A.

No44

(5.4)
Z

X+ UV= [1, ,u]

where the first matrix on the right-hand side has full column

rank-(Exercissk5.6). Thus, for any choice of V such that

the second matrix on the right-hand side of (5. ) has full

row rank, (5.3) holds and rank (X+UV) > rank (A .

The following example illustrates the construction of

matrices, X, of prescribed rank such that A and X satisfy at

least one of the conditions AXA .4 X and XAX = X.

Example 5.1

Let A be the matrix

6 4 0

A = 3 5 -3

3 3 -1

from Example 4.1 with full rank factorization

1 1[0 2 -21

3 1 1]..
1 1

Then rank (A) . 2, and X0 = Q satisfies X0AX0 = X0 trivially.

To construct a matrix, X1, of rank one such that X1AX1 = X1,
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note first that

2

(5.5)
BL T

2 -1 0

is a left inverse of B. NOw if yH n {3 4 5], then

so that

(
e,

To nex construct a matrix' of rank two such that X
2
AX

2
= X

2-

(Cy)' -10-1 9], zH = 4[19

-33 0

XI = yzH = 42 76 -44 '0 .

95 -55. 0 o

-11 0]

(and thus AX2A = A), let

'Then

Y =

CY =

1 -1

1 1

1 -1

0 4

-3

.

(CY)-1 1 {3
-21T

5

and with BL the left inverse of B in (5.5),

so that

5201
'Z VY)- BL V[..-5 /10 0

1
. 1

5 -4 0
,

'

X2 = YZ .- .-. 0 6 0 .

5 -4 0

Finally, to construct a matrix,X3, of rank three su4 that
4MI

3
A = A, let

2

1 [,u {:31, v =

-3 1

81
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where ucN(C). Then

1X3 . X2 + uvH = 315.

5 -4

0 6

S -4

2

;3

-3

with det X3 = -5.

That the procedure in 'Example 5.1 can be

construct matricesX of given rank satisfying,

at least one of the conditions AXA = A and XAX

apparent by observing that CY with full celinnn

BCY has full column rank. Hence,'taking Z,0,0(

holds and AX = BCY(BCY)* is Hermitian: ,fhe

example we indicate matrices Z in.Example 5.1

resulting matrices Xi satisfy (AXi)H = AXi, i

extsnded to

(AX)
H

A1 and

= X is
ar, .

akj.imp34es

BCY)*: (5.2)

following

so that'the

= 1,2,3.

Example 5.2

Given the matrix A and full rank factorization A = BC
in Example 5.1, again let yH = [3 4 5]. Then

34

Ay BCy = 14 , tH = (Ay)* = 44.[17 7 13]

16

'and

51 21 24

X =yz = 64, 28 32

.' 8S '35 40

0

satisfies X
1
AX

1 X1 with AX1°Hermitianand rank (X1) 1 1.

then

. *Gentinuin if we again use

-1

Y a 1 1

-A 0
1 ti

10 -Z

AY a BCY 5 5 z a (")+ 220

1 16 5

S 1
-20 35

o



and

.
.

X2 = YZ = 1.10. -2 20 6

18 -15 1

. 18 its 1

with X2AX2 =,X2,AX2 Hermitian and rank (X.2) =\.2.

Now taking..0
H

= [2 -3 -3] is in the previous example

nd vii0= .1/110[0 1 '1) gives t
- ,

X
3
= X

2
+ uvH =

1
IIU

18

-2

18

-13

17

-18

3

3

-2 .

..

with AX3A = A, AX3 Hermitian and det X3 = -10. .

)

Given any full rank factorization A = BC, first chbvsing

a matrix Z so that ZB (and thus ZBC) has full row rank pro-
.

vides a completely dual procedure to that in Example.5.1 in

which Y CR(ZB)Rwith CR any right inverse of C and (ZB)R

an/ right inverse of ZB. leaking Y = (ZBC), then gives

matrices analogous to'those in Example 5
k
Zan Welch we now,

hair" (XiA)H = XiA, i= 1,2,3.

' ' Weconclnde this brief introduction to generalized,

inverses that are not pnique by observing that the question

sof.represenIting. all sAitions of particular subsits of equa-

tions such as AXA = A orXAX = X and AX OT XA Hermitian has

not been considered. Also, although bbviqus properties of

matrices A and X satisfying AXA = A with*AX and; XA Hermitian

4,1,"re included in the exercises,, the more difficult question'

when AXA = A fps replaced by the nonlinear relation XAX = X,

is only treated superficially. The interested reader is

prged to consult [2] for a detailed discussion of these

topics.
c.

Exercises

5.1 Show that any twq of the copditiqns AXA A, XAX X,

rank. (X) rank (A) Imply the third.

'5.2. Show `that XAX 0 if AXA A, (AX)H AX acid (XA)H XA.

83



5.3 Let A = BC and X = YZ where Y and ZH have full column rank.

a. Show that XAX = X and (AX) H = AX if and only if BCY = Z+.

Dually, show that1XAX = X and .(XA) H.= XA if and only if
Z8C = Y+.

b. Given the matrix

A 0

I

4

-2

-1

31,

1

'At

construct a matrix Xi of rank one such t .X
1
AX

1

= X1 and

ix X2 of rank two such
(AX )H = AX Also, construct a ma

that X,AX., = X2 and (X2A)

5:4 Let A = BC andX YZ whete

dolumn rank.

a. r Show that

C=

b.

c.

s squ;re and B and CH'have full

AXA = A and XA = AX, then B = YZBCB and

YZ where (CB) -1 exists.

Why is it not of 'interest to, consider also the special
cases when (28)

-1
or (Cy) exist?

What equations must Y and Z satisfy if XAX = X and AX = ?CAI

5.5 Verify that the inverses
constructed in Examples 5.1 and 5.2

4 'satisfy the .requi red properties.

5.6 Prove that If W = (t,U1)is
any matrix %.10t11 CY nonsingular and

cojumris of U in N(C), 1 inearly
independen,t, then W has full column

rank.

5.7 ,Prove that A =

matrix, -then CB =

5.e Show that if A = B

matrix such that C

BC, is any full rank factorization of a

I if and only if.A is Adempotent.

C is any full rank factorjzation and Y

Y Is nonsingular, A+ = ((AY)+A)+(AY)+:

square

is any

.
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Appendix 1:
.

Hints for. Certain' -Exercises
A

I

Chapter 1

Ex. 1.lb: xy
H
= yx

H
implies y ax where

(x.y) 0 0.

Ilxil2

(Ex. 1.2c; If SAHA CAHA then (BAHrCAH)A(BH -CH) 0.

en Todi = oxxH.

Ex. 1.3a: If P is the matrix with columns x
1 ..A

... x
n , and A is the

diagonal matrix with diagonal elements A1, 1 . 1 ... . . n, AP . PA. Hepce
A is (PA)PH since P is unitary. 12v If A is Hermitian, AiEi TiEi,
1 . 1 n '

.

tEx. 1.5b: If u
k is the column vector with k elements eachtequal to

unity,

-"n-1

1 -u-

'n

An
-1

n-1

for all n > 2. 1.5c: SubtractSubtract the last row of A
n from each of the.'

ow'

a
-79-
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preceding rows and expand the determinant using cofactors of the first

Column. 1.5d: An -1 he s all integral elements.

'Ex. I.6a: .Let X = I + axxil'and determine a so that AX = I. 1.6b:

A -. 6[I +
20 H where ux 1.6e: Ax = (l+k)x and Ay = y.1

ATI 40 .

1.6f: For any n > 2 the vectors /aro

0

0

are orthogonal.

Ex. 1.7b: Form XA first.

-2

0

Chapter 2

Ex. 2.2: AZ = 0, and2a = 0 implies a = 0.

Ex: 2.5: x
1

is orthogonal to every vector ztH(A). Hence

1 1x11 - 11x111 la,12

Ex. 2.6: Let A be m by n with rank r, so that' dim N(A) = n-r. How assume.

rank (AHA) k < r, and let zi,...,zn_k denote any basis of N(AHA). Then

o = (zAHAz.) = (Az. ,Az.) = 11Az. 112I' I.

implies Azi = 0, i =it ...,n-k. Hence dim H(A) > n-k > n r, a contra-

diction.
. 4

Ex. 2.10: Use Exercise 2.9 and apply Exercise 1.6a. -

Ex. 2.11a: Use Exercise& 10 toobt$in Al.b and Exercise2.2 to form

acii(A). .2.11d: to this
1

°case

u

uH_
n

.:; 8 6
-807
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Ex. 2.13: A = uv" is a full rank factorization.
Use Theorem 4 and the

remarks in the final paragraph of Section 2,2.

Ex. 2.14:

x = A+b + aizi
11

is an olthogonal decomposition of any vector x. Now take the inner
product of withwith any vector z1.

Ex. 2.15: For any i = 1,...,m, column i of A+ is the minimal norm solu-
tion of Ax = el.

Ex. 2.20e: Use Exercise 1.2c and its dual that BAA
H
= CAA

H
if and only

if BA . CA. a

Chapter 3

k
Ha

lc/

4./

A,

:11r17

I W-)X]

1 if

I

is a full

and only if ck

H

up

p+1)Ip-upup

in terms of

j=!1 1-1

rank factorizatibn.

0 O.

0

Xtig

coloonents as ;t1 , ,,,

410

Ex. 3.2b: A

Ex- 3.7a: d

Ex. 3.111:

Now if x=

then

and

=

Is written

4 P+I i=1

t 1- ! yi.
I' °I

tj'
i - i,...,p.

3.1Ic: With
!
dim N(A) = 1 anand: z = EN(A), all solutions of Ax = y can

:

.16

pe'writen In terms.of components as m - a and ti =.ti +a,

where a is arbitrary

, -81- 87
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P ?

If t 0, then
iwl

so that

and

f =iLpq I 1 y q !' ')

1.1 1.!1 ywl ywl
Y

-11

1
Pq.P4-1, jwlYii

Tx'

.

jt.1

I I
i q . Twi

l

Yljja

EJLL11: XxXIIY AP(x)(y),

1

'

Ex..3.14a: k
hP

-I
n

XI
P P

and --u
H

u
+

.

3.14b: Let z1,...,zn be any complete orthonormal set of eigenvectors

of In - W
+
W where zi,...,zr correspond to eigenvalue A - 1 and

zr+1' 'zn
correspond to eigenvalue A - 0. Combine these vector's with

those in the hint for Exercise 1.6f.

°

Ex. 3.15: Use Gauss el iminaxIon to reduce I to bloclgeform

Ex. 3.17: Xyi corresponds to eigenvalue one if and Only if

1-(zi XY.1) 1 O.

Ex. 3.20: AX and /(11. D consistent implies C and D8+8 w D.
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Chapter 4

Ex. 4.2a: (8HB)-1BH
(cHB)+Ji.

4.2b: The relaticin is reflexive, by

Lemma 5(e). If C is alias to B, then g = BB+C = B+H(BHC) is a full rank
factorization and the relation is symmetric since (11°)+ = BH. Transi-

tivity follows by a similar type of argument.

Ex. 4.9: With W = BH,(BW)d = BSB H B)d 2 = BUB
H
B)
+ 2

.

Ex. 4.11: Use an argument similar to that one employed to establish

uniqueness in (2.2).

Ex. 4.16: If A = BC is a full rank factorization and A has index one,

= C+ICB)-1C and A
R
= B(CB) 8

+

by Exercise 4.14. Then

ALA = C*C = A+ A, Akri = B(CB)-Q11+

for all n> i.I.
N

Ex. 4.17: Show first that X = B(WB)dP satisfies all six equations.

Then show that the first set of three.equations implies the second set,

and that the second set implies X has the given farm. .

I --,.- ). .

t

Ex. 4.18: If Ad
2
= Bd2 then.AdB = ABA, so that A

d
= and Bd = AdABd

'''
. . ,

Chapter 5 , ,

1. . ,
Ex. 5.2: Use both the direct and dual form of Exercise 4.10 with £ .., I.

,-

,Ex. 5.3a: Applying Exercise 4.10 to XAX = X, and (AX)H = AX gives

AX . X
+
X =1

+
Z.

aad ,AnlAft

1

= BB+ .= AA+

Ex. 5.4a: B has full

5.8: AY = B(CY) Is a full rank factoriz ;ion.

z
n' ra k. 5.4b: The

10
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